Một số khi chia cho 8 dư 4, chia 9 dư 3. Hỏi khi chia số đó cho 72 dư bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số dư của a khi chia cho 72 là r (0<=r<72) ta có:
+) r chia 9 dư 7 => r thuộc { 7;16;25;34;43;52;61;70}
mà r chia 8 dư 3 => r=43
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Bài 2:
Sửa đề: chia 23 dư 7
Vì a chia 17 dư 1 nên a-16 chia hết cho 17
Vì a chia 23 dư 7 nên a-16 chia hết cho 23
Vậy: a chia 391 dư 16
Gọi số đó là \(n\).
Ta có: \(\hept{\begin{cases}n=8l+1\\n=9k+7\end{cases}\Leftrightarrow\hept{\begin{cases}9n=72l+9\\8n=72k+56\end{cases}}\Rightarrow n=72\left(l-k\right)-47}=72\left(l-k-1\right)+25\)
Vậy \(n\)chia cho \(72\)dư \(25\).
Gọi số đó là a (đk ...)
Theo bài ra , ta có : a+3 chia hết cho cả 9 và 11 => a+3 chia hết cho BCNN(9,11) <=> a+3 chia hết cho 99 => a chia 99 dư : 99-3=96