K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Giả sử cả 2 BĐT trên đều đúng

Cộng theo vế ta được

\(a^2+b^2+c^2+d^2+e^2< a\left(b+c+d+e\right)\)

\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)< 4a\left(b+c+d+e\right)\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2< 0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2< 0\) (vô lý)

Vậy điều giả sử sai

Nói cách khác, 1 trong 2 BĐT đã cho ở giả thiết là sai.

25 tháng 9 2020

Đề thiếu rồi nhé: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Quá ez:))

Ta có: \(a^2+b^2+c^2+d^2+e^2\)

\(=\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)+\left(\frac{a^2}{4}+e^2\right)\)

\(\ge2\sqrt{\frac{a^2}{4}\cdot b^2}+2\sqrt{\frac{a^2}{4}\cdot c^2}+2\sqrt{\frac{a^2}{4}\cdot d^2}+2\sqrt{\frac{a^2}{4}\cdot e^2}\)

\(=ab+ac+ad+ae=a\left(b+c+d+e\right)\)

Dấu "=" xảy ra khi: \(\frac{a}{2}=b=c=d=e\)

25 tháng 9 2020

Sửa đề a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae

Nhân 4 vào từng vế

<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0

<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ac + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0

<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> \(b=c=d=e=\frac{a}{2}\)

10 tháng 9 2018

\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)

\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)

\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)

25 tháng 7 2016

2) Áp dụng bất đẳng thức \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)được : \(a^2+b^2\ge\frac{1}{2}\)

25 tháng 7 2016

1) \(x^2-2xy+y^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)

\(\frac{1}{4}a^2+b^2\ge ab\)

\(\frac{1}{4}a^2+c^2\ge ac\)

\(\frac{1}{4}a^2+d^2\ge ad\)

\(\frac{1}{4}a^2+e^2\ge ae\)

Cộng vế theo vế ta được: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

NV
30 tháng 6 2020

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

NV
30 tháng 6 2020

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

2 tháng 12 2016

cậu là ai trả lời đi ròi tôi nói cho

2 tháng 12 2016

vào các câu hỏi của hoàng tử lớp học mà xem nhóc ạ

8 tháng 2 2020

a.

\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(luôn đúng)

b. Áp dụng BĐT \(x^2+y^2\ge2xy\)

\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

c. Tương tự câu b

8 tháng 2 2020

Áp dụng BĐT Cô si ta có

i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)

\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

k. Tương tự câu i

8 tháng 12 2018

a) Áp dụng BĐT AM - GM:

\(\dfrac{a}{b}+\dfrac{b}{a}\) >= 2\(\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) =2

Dấu '=' xảy ra <=> a=b=1

8 tháng 12 2018

b) Cũng áp dụng BĐT AM- GM nhưng cho 3 số

13 tháng 6 2018

Giả sử không có BĐT nào sai, ta có: 

\(4\left(b+d\right)>a^2+c^2\ge2ac\)

Mà \(ac\ge2\left(b+d\right)\)

\(\Rightarrow4\left(b+d\right)>4\left(b+d\right)\) Vô lí

=> có ít nhất 1 bđt sai

13 tháng 6 2018

Ta có :\(ac\ge2\left(b+d\right)\)\(\Leftrightarrow2ac\ge4\left(b+d\right)\)(1)

Giả sử hai bất đẳng thức \(a^2< 4b;c^2< 4d\)đều đúng , cộng vế với vế hai bất đẳng thức trên ta đc

\(a^2+c^2< 4b+4d\Leftrightarrow a^2+c^2< 4\left(b+d\right)\)

Thay (1) vào bất đẳng thức trên ta đc:\(a^2+c^2< 2ac\)\(\Leftrightarrow\)\(a^2-2ac+c^2< 0\) 

                                                                                              \(\Leftrightarrow\)\(\left(a-c\right)^2< 0\)=> vô lí 

Vậy có ít nhất một trong 2 bất đẳng thức trên là sai.