K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Câu hỏi của nguyễn khắc biên - Toán lớp 9 - Học toán với OnlineMath

9 tháng 4 2015

từ đề bài => 0 < x; y < 2012  và

\(\sqrt{y}=\sqrt{2012}-\sqrt{x}\Rightarrow y=\left(\sqrt{2012}-\sqrt{x}\right)^2=2012+x-2\sqrt{2012}\sqrt{x}=2012+x-4.\sqrt{503.x}\)Vì y nguyên nên \(\sqrt{503.x}\) nguyên => x = 503.k2 Mà 0<  x < 2012 =>0<  503. k2 < 2012 => 0< k2 < 4 => k2 = 1

=> x = 503 => y = 2012 + 503 - 4.503 = 503 

Vậy x = y = 503

dễ thôi :)))

\(\Leftrightarrow x+y+2\sqrt{xy}=1980\)

vì x;y là các số nguyên dương nên x+y là số nguyên dương

\(\Rightarrow2\sqrt{xy}\in Z^+\Rightarrow\orbr{\begin{cases}x=0;y=1980\\x=1980;y=0\end{cases}}\)

4 tháng 12 2016

\(\sqrt{x}+\sqrt{y}=6\sqrt{55}.\)
Đặt \(\sqrt{x}=a\sqrt{55},\sqrt{y}=b\sqrt{55}\Rightarrow a+b=6\)
Do x, y nguyên dương và x<y \(\Rightarrow\left(a,b\right)\in\left\{\left(5,1\right);\left(4,2\right)\right\}\)
Thay vào tính => đáp án ..
 

4 tháng 12 2016

Bạn ơi cho hỏi sao chỉ có 2 cặp vậy

17 tháng 5 2017

chỉ có thể là 0

30 tháng 3 2018

Ta có: \(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\)

\(\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=a\) 

\(\Rightarrow x+\sqrt{x+\sqrt{x}}=a^2\)\(\Rightarrow\sqrt{x+\sqrt{x}}=a^2-x=b\)

\(\Rightarrow x+\sqrt{x}=b^2\Rightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)

Có √x và √(x+1) là 2 số liên tiếp và b^2 là số chính phương nên √x =0 hoặc √x +1 =0

=> x =0 hoặc √x = -1 ( vô nghiệm)

Với x =0 => y=0

Vậy (x;y) = (0;0)

3 tháng 6 2021

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Bạn sai rồi nhé. Xem lại chỗ bình phương.

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)