CMR:
a. (x\(^2\)-y\(^2\))\(^{1999}\) = (x+y)\(^{1999}\). (x-y)\(^{1999}\)
b.\(\dfrac{(5^4-5^3)^3}{125^4}=\dfrac{64}{125}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)
Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)
a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)
\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)
b) Từ (1) => x + z = 2y
Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)
Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)
=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM
a) \(...\Rightarrow x.\left(2+5\right)=14\Rightarrow x.7=14\Rightarrow x=14:7=2\)
b) \(...\Rightarrow x.\left(9+1\right)=20\Rightarrow x.10=20\Rightarrow x=20:10=2\)
c) \(...\Rightarrow x.\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=1999\Rightarrow x.\dfrac{3}{3}=1999\Rightarrow x=1999\)
d) \(...\Rightarrow11.x+22=5.x+40\Rightarrow11.x-5.x=40-22\Rightarrow6.x=18\Rightarrow x=18:6=3\)
e) \(...\Rightarrow11.x-66=4.x+11\Rightarrow11.x-4.x=11+66\Rightarrow7.x=77\Rightarrow x=77:7=11\)
f) \(...\Rightarrow\left(3.x-12\right):x=12-10\)
\(\Rightarrow3.x-12=2.x\)
\(\Rightarrow3.x-2.x=12\)
\(\Rightarrow x=12\)
g) \(...\Rightarrow\left(5.x+7\right):x=26-20\)
\(\Rightarrow5.x+7=6.x\)
\(\Rightarrow6.x-5.x=7\)
\(\Rightarrow x=7\)
h) \(...\Rightarrow x.\left(1999-1\right)=1999.\left(1997+1\right)\)
\(\Rightarrow x.1998=1999.1998\)
\(\Rightarrow x=1999.1998:1998\)
\(\Rightarrow x=1999\)
a, \(x\times\) 2 + \(x\times\) 5 = 14
\(x\) \(\times\) ( 2 + 5) = 14
\(x\) \(\times\) 7 = 14
\(x\) = 14: 7
\(x\) = 2
b, \(x\times9\) + \(x\)= 20
\(x\) \(\times\)( 9 + 1) = 20
\(x\) \(\times\) 10 = 20
\(x\) = 2
c, \(x\) : \(\dfrac{3}{2}\) + \(x\times\dfrac{1}{3}\) = 1999
\(x\times\) \(\dfrac{2}{3}\) + \(x\) \(\times\dfrac{1}{3}\) = 1999
\(x\times\) ( \(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) = 1999
\(x\) = 1999
d, 11\(\times\)(\(x+2\)) = 5 \(\times\) \(x\) + 40
11 \(\times\) \(x\) + 22 = 5 \(\times\) \(x\) + 40
11 \(\times\) \(x\) = 5 \(\times\) \(x\) + 40 - 22
11 \(\times\) \(x\) = 5 \(\times\) \(x\) + 18
11 \(\times\) \(x\) - 5 \(\times\) \(x\) = 18
\(x\) \(\times\) ( 11 - 5) = 18
\(x\) \(\times\) 6 = 18
\(x\) = 3
Đặt \(\dfrac{x}{1998}=\dfrac{y}{1999}=\dfrac{z}{2000}=k\)
\(\Rightarrow x=1998k;y=1999k;z=2000k\)
\(\left(x-z\right)^3=\left(2000k-1998k\right)^3=8k^3\)
\(8\left(x-y\right)^2\left(y-z\right)=8\left(1999k-1998k\right)^2.\left(1999k-2000k\right)\\ =8.k^2.k=8k^3\\ \Rightarrowđpcm\)
Sai đề kìa . Đề đúng đây :
\(\dfrac{x}{1998}=\dfrac{y}{1999}=\dfrac{z}{2000}\)
Đặt \(\dfrac{x}{1998}=\dfrac{y}{1999}=\dfrac{z}{2000}=k\left(k>0\right)\)
Ta có :
x = 1998k ; y = 1999k ; z =2000k
Ta có :
\(\left(x-z\right)^3=\left(1998k-2000k\right)^3=\left(-2k\right)^3=-8k\) (*)
\(8\left(x-y\right)^2\cdot\left(y-z\right)=8\left(1998k-1999k\right)^2\cdot\left(1999k-2000k\right)\)
\(=8\left(-1\right)^2\cdot\left(-1\right)=-8\) (**)
Từ (*) và (**) suy ra ĐPCM
2003 / 2001 = 1 + 2/2001
1999/1997 = 1 + 2/1997
vì 2/ 2001 < 2/1997
nên 1 + 2/2001 < 1 + 2/1997
hay 2003 < 1999/1997
b, = 5/9 x 1/4 + 4/9 x 1/4
= 1/4 x ( 5/9 + 4/9 )
= 1/4 x 1
= 1/4
* Ý a mk k nhớ cách làm ^^, xl *
\(b,\dfrac{5}{9}\times\dfrac{1}{4}+\dfrac{4}{9}\times\dfrac{3}{12}\)
\(=\dfrac{5}{9}\times\dfrac{1}{4}+\dfrac{4}{9}\times\dfrac{1}{4}\)
\(=\dfrac{1}{4}\times\left(\dfrac{5}{9}+\dfrac{5}{9}\right)\)
\(=\dfrac{1}{4}\times\dfrac{9}{9}=\dfrac{1}{4}\times1=\dfrac{1}{4}\)
\(a,\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=-\dfrac{64}{125}\)
\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\left(\dfrac{-4}{5}\right)^3\)
\(\dfrac{3}{5}-\dfrac{2}{3}x=-\dfrac{4}{5}\)
\(-\dfrac{2}{3}x=-\dfrac{4}{5}-\dfrac{3}{5}\)
\(-\dfrac{2}{3}x=-\dfrac{7}{5}\)
\(x=\dfrac{21}{10}\)
\(b,\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)
\(x-\dfrac{2}{9}=\dfrac{4}{9}\)
\(x=\dfrac{2}{3}\)
\(c,\left(0,4x-1,3\right)^2=5,29\)
\(\left(0,4x-1,3\right)^2=2,3^2=\left(-2,3\right)^2\)
TH1: \(0,4x-1,3=2,3\)
\(0,4x=3,6\)
\(x=9\)
TH2: \(0,4x-1,3=-2,3\)
\(0,4x=-1\)
\(x=-\dfrac{5}{2}\)
=.= hok tốt!!
a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)
\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)
\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{49}{10}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)
+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)
\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{13}{15}\)
+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)
\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)
\(\Rightarrow x=\dfrac{125}{16}\)
a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)
\(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)
\(x\). \(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)
\(x\) = - \(\dfrac{49}{60}\).6
\(x\) = -\(\dfrac{49}{10}\)
a. VP: \(\left(x+y\right)^{1999}\cdot\left(x-y\right)^{1999}=\left[\left(x+y\right)\left(x-y\right)\right]^{1999}\)
\(=\left(x^2-xy+xy-y^2\right)^{1999}=\left(x^2-y^2\right)^{1999}=VT\)
--> đpcm
b. VT: \(\dfrac{\left(5^4-5^3\right)^3}{125^4}=\dfrac{500^3}{125^4}=\dfrac{125^3\cdot4^3}{125^4}=\dfrac{4^3}{125}=\dfrac{64}{125}=VP\)
--> đpcm