K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(U=mn\left(m+n\right)+np\left(n+p\right)+pm\left(p+m\right)+2mnp\)

\(=mn\left(m+n\right)+np\left(n+p+m\right)+pm\left(p+m+n\right)\)

\(=mn\left(m+n\right)+p\left(n+p+m\right)\left(n+m\right)\)

\(=\left(n+m\right)\left(m+p\right)\left(n+p\right)\)

23 tháng 8 2021

Đề yêu cầu gì vậy?

 

1 tháng 11 2017

a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1

Khi đó

 \(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)

\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)

\(=4\left(ab+bc+ca+a+b+c\right)+3\)

Vậy thì mn + np + pm chia 4 dư 3.

b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:

Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4

Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.

Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vận dụng tính chất giao hoán ta có: \[\overrightarrow u  = \overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MN}  + \overrightarrow {NP}  = \overrightarrow {MP} \]

Chọn C.

NV
12 tháng 1

\(\Leftrightarrow\dfrac{z-mn}{m+n}-p+\dfrac{z-np}{n+p}-m+\dfrac{z-pm}{p+m}-n=0\)

\(\Leftrightarrow\dfrac{z-\left(mn+mp+np\right)}{m+n}+\dfrac{z-\left(mn+mp+np\right)}{n+p}+\dfrac{z-\left(mn+mp+np\right)}{p+m}=0\)

\(\Leftrightarrow\left[z-\left(mn+mp+np\right)\right]\left(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}\right)=0\)

- Nếu \(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}=0\) thì pt nghiệm đúng với mọi z

- Nếu \(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}\ne0\)

\(\Rightarrow z=mn+mp+np\)

13 tháng 1

Em cảm ơn ạ.

28 tháng 3 2016

Theo BĐT tam giác:

(*)m+n>p

<=>(m+n).p>p2

<=>mp+np>p2 (p>0)    (1)

(*)m+p>n

<=>(m+p).n>n2

<=>mn+pn>n2 (n>0)    (2)

(*)n+p>m

<=>(n+p).m>m2

<=>mn+pm>m2 (m>0)  (3)

Cộng từng vế các BĐT (1);(2);(3)

=>mp+np+mn+pn+mn+pm>m2+n2+p2

=>(mp+mp)+(pn+pn)+(mn+mn)>m2+n2+p2

=>2mp+2pn+2mn>m2+n2+p2

=>2(mn+np+pm)>m2+n2+p2

=>2(m2+n2+p2)-2(mn+np+pm)<m2+n2+p2

=>m2+n2+p2<2(mn+np+pm)  (đpcm)

29 tháng 3 2016

bn bỏ cái dòng thứ 2 từ dưới lên giúp mk nhé

28 tháng 9 2020

M N P A B C D E F

Ta có : AB là đường trung trực của MN

             CD là đường trung trực của MP

              EF là đường trung trực của NP

=> (m+n+p)2=152=225

=> (m+n+p)2= m2+n2+p2+2(mn+np+pm)=225

=> 77 + 2(mn+np+pm)=225

=> 2(mn+np+pm)=225 - 77 =148

=> mn+np+pm= 148 : 2 = 74