K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Bài này có 4 cách nhé mik làm luôn cả 4 cách

12 tháng 7 2017

Cách 1: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

Xét tích (a-b).c=ac-bc=ac-ad=a.(c-d)

Vay (a-b).c =a.(c-d)

=>\(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

Cách 2:

Ta đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=kb;c=kd\)

Thế thì \(\dfrac{a-b}{a}=\dfrac{kb-b}{kb}=\dfrac{b.\left(k-1\right)}{kb}=\dfrac{k-1}{k}\) (1)

\(\dfrac{c-d}{c}=\dfrac{kd-d}{kd}=\dfrac{d.\left(k-1\right)}{kd}=\dfrac{k-1}{k}\) (2)

Từ (1),(2) => \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

Cách 3:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

Vay \(\dfrac{a-b}{c-d}=\dfrac{a}{c}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

Cách 4:

\(\dfrac{a}{b}=\dfrac{c}{d}\)nen \(\dfrac{b}{a}=\dfrac{d}{c}\)

Ta có: \(\dfrac{a-b}{a}=\dfrac{a}{a}-\dfrac{b}{a}=1-\dfrac{b}{a}=1-\dfrac{d}{c}=\dfrac{c-d}{c}\)

Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2022

Lời giải:

$\frac{a+b}{a-b}=\frac{c+d}{c-d}$

$\Rightarrow (a+b)(c-d)=(a-b)(c+d)$

$\Rightarrow ac-ad+bc-bd=ac+ad-bc-bd$

$\Rightarrow 2ad=2bc$

$\Rightarrow ad=bc$

$\Rightarrow \frac{a}{b}=\frac{c}{d}$ (đpcm)

9 tháng 8 2023

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có VT:

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)

\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)

VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) 

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

9 tháng 8 2023

Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

Vậy...

30 tháng 10 2021

Nhanh nha gianroi

30 tháng 10 2021

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

18 tháng 4 2017

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


11 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

21 tháng 5 2017

a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b,

, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

10 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) thì \(a=b.k\) , \(c=d.k\)

Ta tính giá trị của các tỉ số \(\dfrac{a-b}{a};\dfrac{c-d}{c}\) theo \(k\)

\(\dfrac{a-b}{a}=\dfrac{b.k-b}{b.k}=\dfrac{b.\left(k-1\right)}{b.k}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{d.k-d}{d.k}=\dfrac{d\left(k-1\right)}{d.k}=\dfrac{k-1}{k}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

29 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)

Ta có : \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{k}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\dfrac{a-b}{a}=k=\dfrac{c-d}{c}\)

\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\left(ĐPCM\right)\)

Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\\ ac+bc-2ad-2bd=ac+ad-2bc-2bd\\ bc-2ad=ad-2bc\\ 3bc=3ad\\ bc=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

12 tháng 7 2017

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)

\(\Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)

\(\Leftrightarrow2ad+ad=2bc+bc\)

\(\Leftrightarrow3ad=3bc\)

\(\Leftrightarrow ad=bc\rightarrowđpcm\)

27 tháng 8 2023

a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)

 \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\Rightarrow dpcm\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

\(\Rightarrow dpcm\)

27 tháng 8 2023

Thanks

11 tháng 5 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\left(đpcm\right)\)

Vậy...

11 tháng 5 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Từ đó suy ra : \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)