Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\\ ac+bc-2ad-2bd=ac+ad-2bc-2bd\\ bc-2ad=ad-2bc\\ 3bc=3ad\\ bc=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)
\(\Leftrightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)
\(\Leftrightarrow2ad+ad=2bc+bc\)
\(\Leftrightarrow3ad=3bc\)
\(\Leftrightarrow ad=bc\rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) thì \(a=b.k\) , \(c=d.k\)
Ta tính giá trị của các tỉ số \(\dfrac{a-b}{a};\dfrac{c-d}{c}\) theo \(k\)
\(\dfrac{a-b}{a}=\dfrac{b.k-b}{b.k}=\dfrac{b.\left(k-1\right)}{b.k}=\dfrac{k-1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=\dfrac{d.k-d}{d.k}=\dfrac{d\left(k-1\right)}{d.k}=\dfrac{k-1}{k}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)
Ta có : \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{k}=\dfrac{k-1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a-b}{a}=k=\dfrac{c-d}{c}\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\left(ĐPCM\right)\)
Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )
\(\Rightarrow\) \(a=b.k\)
\(c=d.k\)
Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)
\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b,
, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )
\(\Rightarrow\) \(a=b.k\)
\(c=d.k\)
Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)
\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk\) và \(c=dk\)
Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))
\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc=>ab+ad=ab+bc\)
\(a\left(b+d\right)=b\left(a+c\right)\)
\(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\left(đpcm\right)\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Từ đó suy ra : \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Lần lượt thay a và c vào các ý cần chứng minh, áp dụng theo tính chất phân phối giữa phép nhân đối với phép cộng (hay phép trừ) để tính ở mỗi vế.
Mẫu: a) Ta có : \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
a)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(a=b.k\)
\(c=d.k\)
\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(a=b.k\)
\(c=d.k\)\(\dfrac{a-b}{a}=1-\dfrac{b}{a}=1-\dfrac{b}{bk}=1-\dfrac{1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=1-\dfrac{d}{c}=1-\dfrac{d}{dk}=1-\dfrac{1}{k}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Bài giải:
Với \(a,b,c,d\ne0\) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{b}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\Rightarrow\dfrac{a-b}{c-d}=\dfrac{b}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(ĐPCM\right)\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)
Khi đó:
\(\dfrac{a+b}{a-b}=\dfrac{bt+b}{bt-b}=\dfrac{b\left(t+1\right)}{b\left(t-1\right)}=\dfrac{t+1}{t-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dt+d}{dt-d}=\dfrac{d\left(t+1\right)}{d\left(t-1\right)}=\dfrac{t+1}{t-1}\)
Ta có đpcm
a.Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
=>\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)
b.Vì\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{a}{c}-1=\dfrac{b}{d}-1\)
=>\(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)(đpcm)
a)\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
=>\(\dfrac{a}{b}\) -1= \(\dfrac{c}{d}\) -1
=> \(\dfrac{a}{b}\) - \(\dfrac{b}{b}\) = \(\dfrac{c}{d}\) - \(\dfrac{d}{d}\)
=> \(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
Bài này có 4 cách nhé mik làm luôn cả 4 cách
Cách 1: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
Xét tích (a-b).c=ac-bc=ac-ad=a.(c-d)
Vay (a-b).c =a.(c-d)
=>\(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Cách 2:
Ta đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=kb;c=kd\)
Thế thì \(\dfrac{a-b}{a}=\dfrac{kb-b}{kb}=\dfrac{b.\left(k-1\right)}{kb}=\dfrac{k-1}{k}\) (1)
\(\dfrac{c-d}{c}=\dfrac{kd-d}{kd}=\dfrac{d.\left(k-1\right)}{kd}=\dfrac{k-1}{k}\) (2)
Từ (1),(2) => \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Cách 3:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
Vay \(\dfrac{a-b}{c-d}=\dfrac{a}{c}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Cách 4:
Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)nen \(\dfrac{b}{a}=\dfrac{d}{c}\)
Ta có: \(\dfrac{a-b}{a}=\dfrac{a}{a}-\dfrac{b}{a}=1-\dfrac{b}{a}=1-\dfrac{d}{c}=\dfrac{c-d}{c}\)
Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)