2 Chứng minh:
a) \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{4}.(\dfrac{1}{n}-\dfrac{1}{n+4})\) b)Tính A=\(\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+...+\dfrac{4}{95}.\dfrac{4}{99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)
= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)
Vậy ...
3.a)\(\dfrac{-1}{2}+\dfrac{5}{6}+\dfrac{1}{3}=\dfrac{-3}{6}+\dfrac{5}{6}+\dfrac{2}{6}=\dfrac{-3+5+2}{6}=\dfrac{4}{6}=\dfrac{2}{3}\)
b)\(\dfrac{-3}{8}+\dfrac{7}{4}-\dfrac{1}{12}=\dfrac{-9}{24}+\dfrac{42}{24}-\dfrac{2}{24}=\dfrac{-9+42-2}{24}=\dfrac{31}{24}\)
c)\(\dfrac{3}{5}:\left(\dfrac{1}{4}.\dfrac{7}{5}\right)=\dfrac{3}{5}:\dfrac{7}{20}=\dfrac{3}{5}.\dfrac{20}{7}=\dfrac{12}{7}\)
d)\(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}=\dfrac{10}{11}+\dfrac{4}{11}.\dfrac{1}{4}-\dfrac{1}{8}=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8}{8}-\dfrac{1}{8}=\dfrac{7}{8}\)
b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(B\text{=}2.63+...+2^{56}.63\)
\(\Rightarrow B⋮63\)
\(\Rightarrow B⋮21\)
a)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)
b)
\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)
c)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)
d) tương tự câu 1
A = \(\dfrac{4}{3}\) . \(\dfrac{4}{7}\) + \(\dfrac{4}{7}\) . \(\dfrac{4}{11}\) + \(\dfrac{4}{11}\) . \(\dfrac{4}{15}\) + ... + \(\dfrac{4}{95}\) . \(\dfrac{4}{99}\)
A = \(\dfrac{4.4}{3.7}\) + \(\dfrac{4.4}{7.11}\) + \(\dfrac{4.4}{11.15}\) + ... + \(\dfrac{4.4}{95.99}\)
A = \(\dfrac{16}{3.7}\) + \(\dfrac{16}{7.11}\) + \(\dfrac{16}{11.15}\) + ... + \(\dfrac{16}{95.99}\)
A = 4.( \(\dfrac{4}{3.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{4}{11.15}\) + ... + \(\dfrac{4}{95.99}\))
A = 4.( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{95}\) - \(\dfrac{1}{99}\))
A = 4.(\(\dfrac{1}{3}\) - \(\dfrac{1}{99}\))
A = 4.(\(\dfrac{33}{99}\) + \(\dfrac{-1}{99}\))
A = 4. \(\dfrac{32}{99}\)
A = \(\dfrac{4.32}{99}\)
A = \(\dfrac{128}{99}\)
Vậy A = \(\dfrac{128}{99}\)
2,
\(M=\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\) =\(\dfrac{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{4}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
a, Ta có: \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{n.\left(n+4\right)}=\dfrac{1}{4}.\dfrac{4}{n.\left(n+1\right)}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
Vậy \(\dfrac{1}{n}.\dfrac{1}{n+1}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
b, \(A=\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+...+\dfrac{4}{95}.\dfrac{4}{99}=4.\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{95.99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)=4.\dfrac{32}{99}=\dfrac{128}{99}\)
Vậy \(A=\dfrac{128}{99}\)