K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(P=Q\) thì \(x=y=z\) lật lại là \(x=y=z\) thì \(P=Q\) ta thay vào xem nó đúng thật ko nhé :v

Với \(x=y=z\) thì \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)

\(=\left(x+x\right)^2+\left(x+x\right)^2+\left(x+x\right)^2\)

\(=\left(2x\right)^2+\left(2x\right)^2+\left(2x\right)^2=4x^2+4x^2+4x^2=12x^2\)

Với \(x=y=z\) thì \(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(x+z\right)+\left(x+z\right)\left(x+y\right)\)

\(=\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)\)

\(=2x\cdot2x+2x\cdot2x+2x\cdot2x\)

\(=4x^2+4x^2+4x^2=12x^2\)

Rõ rằng là bằng nhau rồi tức là điều trên cũng đúng hay ta có ĐPCM

2 tháng 7 2017

thank bạn

26 tháng 11 2016

Đặt \(a=x+y,b=y+z,c=z+x\)

Khi đó nếu P = Q tức là \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Từ đó bạn suy ra nhé ! ^^

26 tháng 11 2016

thanks you very muck :))

10 tháng 3 2019

có điều kiện j k thế

10 tháng 3 2019

đề vậy thôi, nhưng cám ơn nha. mk biết lm oii

2 tháng 1 2017

Ta có \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z\ge\frac{x+y+z}{2}+x+y+z\)

\(\Rightarrow x\left(\frac{x}{y+z}+1\right)+y\left(\frac{y}{x+z}+1\right)+z\left(\frac{z}{x+y}+1\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow x\left(\frac{x+y+z}{y+z}\right)+y\left(\frac{y+x+z}{x+z}\right)+z\left(\frac{z+x+y}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (Theo BĐT Nesbitt )

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (đpcm)

26 tháng 4 2019

P/s: Em mới lớp 7 thôi nên có gì sai mong anh/chị thông cảm ạ.

Khai triển ra ta được: \(Q=x^2+y^2+z^2+3\left(xy+xz+yz\right)\)

\(P=2\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\)

Do P = Q nên P - Q = 0.Hay:\(x^2+y^2+z^2-xy-yz-zx=0\)

Nhân 2 vào hai vế suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\) .Suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Dấu "=' xảy ra khi x = y = z (đpcm)

chứng minh ngược lại bạn ơi

chứng minh x=y=z thì p=q 

19 tháng 9 2020

Đặt \(x+y=a;y+z=b;z+x=c\)thì P=Q có nghĩa là:

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

\(\Leftrightarrow a=b=c\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\)

28 tháng 8 2017

em lp 6  a ơi