K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

a, \(\dfrac{16}{2^n}=2\)

\(2^n=\dfrac{16}{2}\)

\(2^n=8\)

\(2^n=2^3\)

=> n = 3

b, \(\dfrac{\left(-3\right)^n}{81}=-27\)

\(\left(-3\right)^n=-27\cdot81\)

\(\left(-3\right)^n=\left(-3\right)^3\cdot3^4\)

\(\left(-3\right)^n=\left(-3\right)^7\)

=> n = 7

c, \(8^n:2^n=4\)

\(2^{3n}:2^n=2^2\)

\(2^{2n}=2^2\)

=> 2n = 2

n = 2:2

n = 1

26 tháng 6 2017

a )

\(\dfrac{16}{2^n}=2\) \(\Leftrightarrow16:x=2\)

\(\Rightarrow x=8\)

\(2^n=8\Rightarrow n=3\)

b )

\(\dfrac{\left(-3\right)^n}{81}=-27\) \(\Leftrightarrow x=-27.81\)

\(\Rightarrow x=-2187\)

\(\left(-3\right)^n=-2187\Rightarrow n=7\)

c )

\(8^n:2^n=4\Leftrightarrow4^n=4\)

\(\Rightarrow n=1\)

11 tháng 9 2017

a)

b,
\(\dfrac{\left(-3\right)^n}{81}=-27\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=-27\Rightarrow\left(-3\right)^{n-4}=\left(-3\right)^3\Rightarrow n-4=3\Rightarrow n=7\)

c,\(8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)

11 tháng 9 2017

undefined => (-3)n-4 = (-3)3

=> n - 4 = 3 => n = 7

c) 8n : 2n = 4

4n = 4.

14 tháng 9 2021

c)\(7^{2n}+7^{2n+2}=2450\)

\(7^{2n}+7^{2n}.7^2=2450\)

\(7^{2n}.50=2450\)

\(7^{2n}=49\)\(=7^2\)

⇒2n=2

⇒n=1

14 tháng 9 2021

a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\)                   b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)

\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\)                    \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)

⇒n=3                                          ⇒m=2

8 tháng 9 2017

Bài 1:

a, \(\left(x-2\right)^2=9\)

\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)

b, \(\left(3x-1\right)^3=-8\)

\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)

\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)

d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)

\(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)

e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)

\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)

f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\)\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

$A=\frac{2}{3}+\frac{4}{3^2}+\frac{6}{3^3}+...+\frac{2n}{3^n}$

$3A=2+\frac{4}{3}+\frac{6}{3^2}+....+\frac{2n}{3^{n-1}}$

$3A-A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$

$2A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$

$A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}-\frac{n}{3^n}$

$3A=3+1+\frac{1}{3}+....+\frac{1}{3^{n-2}}-\frac{n}{3^{n-1}}$

$3A-A=3-\frac{1}{3^{n-1}}-\frac{n}{3^{n-1}}+\frac{n}{3^n}$

$2A=3-\frac{n+1}{3^{n-1}}+\frac{n}{3^n}$

$2A=\frac{3^{n+1}-2n-3}{3^n}$

$A=\frac{3.3^n-2n-3}{2.3^n}$

$\Rightarrow a=3; b=1; c=2\Rightarrow abc=6$

a)x ∈ ∅

b) x=3

13 tháng 9 2021

\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)

19 tháng 4 2022

a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)

\(24n+384=25n+325\)

\(25n-24n=384-325\)

\(n=59\)

19 tháng 4 2022

b) Sai đề nha

\(\left\{{}\begin{matrix}\dfrac{2018}{2019}< 1\\\dfrac{2019}{2020}< 1\\\dfrac{2020}{2021}< 1\\\dfrac{2021}{2022}< 1\end{matrix}\right.\)

\(\Rightarrow\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2022}< 4\)

11 tháng 2 2022

\(a,lim\dfrac{^3\sqrt{8n^3+2n}}{-n+3}\)

\(=lim\dfrac{^3\sqrt{8+\dfrac{2}{n^2}}}{-1+\dfrac{3}{n}}=\dfrac{^3\sqrt{8}}{-1}=\dfrac{2}{-1}=-2\)

NV
12 tháng 2 2022

\(\lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n-1\right)\left(3-2n\right)}=\lim\dfrac{\left(2+\dfrac{1}{n\sqrt{n}}\right)\left(1+\dfrac{3}{\sqrt{n}}\right)}{\left(1-\dfrac{1}{n}\right)\left(\dfrac{3}{n}-2\right)}=\dfrac{2.1}{1.\left(-2\right)}=-1\)

12 tháng 7 2017

\(\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{27}\right)\)

\(\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)

\(\Rightarrow n=3\)

\(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)

\(\Rightarrow n=4\)

12 tháng 7 2017

a, \(\left(\dfrac{1}{3}\right)^n=\dfrac{1}{27}\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)

\(\dfrac{1}{3}\ne-1,\dfrac{1}{3}\ne0;\dfrac{1}{3}\ne1\) nên \(n=3\)

Vậy........

b, \(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)

\(\dfrac{3}{5}\ne-1,\dfrac{3}{5}\ne0;\dfrac{3}{5}\ne1\) nên \(n=4\)

Vậy..........

Chúc bạn học tốt!!!