Hai đường thẳng AB và CD cắt nhau tại O tạo thành 4 góc khác góc bẹt biết AOC= 2/3 BOC. Tính số đo 4 góc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: Góc AOC- góc AOD=200
Mà góc AOC+ góc AOD=1800
=> Góc AOC=\(\frac{180}{2}+20=100^0\)
=> Góc AOD\(=100-20=80^0\)
Mà góc COB,DOB lần lượt là các góc đối đỉnh của góc AOD,AOC.
=> Góc COB=800
=> Góc DOB=1000
Bài 2: Ta có: Góc AOC là góc đối đỉnh của góc BOD
=> Góc BOD=500
Mà OM là tia phân giác và cũng là tia đối của ON nên:
Góc BON=DON=\(\frac{50}{2}=25^0\)
Vì góc AOC 'và góc BOC là hai góc kề bù
=> Góc AOC + Góc BOC = 180 độ
=> Góc AOC = (180 độ + 50 độ) : 2 = 115 độ
=> Góc BOC = 180 độ - 115 độ = 65 độ
=> Góc AOC = góc BOD = 115 độ (hai góc đối đỉnh)
=> Góc BOC = góc AOD = 65 độ (hai góc đối đỉnh)
Trả lời: Góc AOC = 115 độ
Góc BOC = 65 độ
Góc BOD = 115 độ
Góc AOD = 65 độ
Theo bài ra ta có: AOC + BOC= 1800(vì kề bù) mà góc AOC -BOC= 500 => AOC =(180 +50) :2 =1150
=> BOC =180 - 115 =650
Vì AOD = BOC (vì đổi đỉnh)=> COB = 650
AOC=BOD(vì đổi đỉnh)=>BOD=1150
Ta có Ô1 + Ô2 = 180 độ (kề bù)
mà Ô1 - Ô2 = 30 độ
\(\Rightarrow\) Ô1 = (180 độ + 30 độ) : 2 = 105 độ
\(\Rightarrow\) Ô2 = 105 độ - 30 độ = 75 độ
Ô3 đối đỉnh với góc Ô1 \(\Rightarrow\) Ô3 = Ô1 = 105 độ
Ô4 đối đỉnh với góc Ô2 \(\Rightarrow\) Ô4 = Ô2 = 75 độ
Ta có : $\widehat{AOC}=\widehat{BOD}$ (đối đỉnh)
$\widehat{BOC}=\widehat{AOD}$ (đối đỉnh)
Vì $\widehat{AOC}+\widehat{BOC}=180^o$ mà $\widehat{AOC}=\dfrac{2}{3}\widehat{BOC}$
$=>\dfrac{2}{3}\widehat{BOC}+\widehat{BOC}=180^o$
$=>\dfrac{5}{3}\widehat{BOC}=180^o$
$=>\widehat{BOC}=108^o$
$=>\widehat{AOC}=180^o-108^o=72^o$
Vậy $\widehat{AOC}=\widehat{BOD}=72^o$
$\widehat{BOC}=\widehat{AOD}=108^o$