tim he so cua x2 trong khai trien x(x+1)3+x2(x-2)5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức tổng quát của khai triển là : \(C_n^ka^{n-k}b^k\left(0\le k\le n\right)\)
Theo bài ra ta có : \(C^k_{10}\left(\frac{1}{3}\right)^{10-k}\left(\frac{2}{3}x\right)^k=C^k_{10}\left(\frac{1}{3}\right)^{10-k}\left(\frac{2}{3}\right)^kx^k\)
Để hệ số khai triển là lớn nhất thì ứng với k=5 (Vì theo tam giác pascal số mũ là số chẵn thì có một hệ số lớn nhất)
ta có : \(x^k=x^5\Leftrightarrow k=5\)
Vậy hệ số cần tìm là : \(C^5_{10}\left(\frac{1}{3}\right)^5\left(\frac{2}{3}\right)^5=\frac{896}{6561}\)
Nếu đề bài là \(\left(\dfrac{10}{x}+4y\right)^4\) thì đề sai, không thể tồn tại số hạng chứa \(x^2y^2\) trong khai triển nói trên
tổng các hệ số trong đa thức một biến bằng giá trị của đa thức đó tại giá trị của biến bằng 1
A(1)=\(\left(1^4+4.1^2-5.1+1\right)^{1994}\)
\(\Rightarrow A\left(1\right)=\left(1+4-5+1\right)^{1994}=1^{1994}=1\)
vậy tổng các hệ số trong A(x) là 1
Hệ số của x2y2 trong khai triển (2x - 3y2)3 là??? Tham khảo mình làm đây này đúng 100%
= -36
gọi 3 số lẻ liên tiếp là a;a+2;a+4(a lẻ)
vì tổng bằng 21 nên tacos a+(a+2)+(a+4)=21
=>a=5
vậy số thứ nhất ,thứ 2,3 lll 5;7;9
f(x) = (m+1)x² - 2(m+1)x + 2m+3
♠ m = -1: f(x) = 0.x² - 0.x + 1 = 1 > 0 với mọi x nên f(x) ≥ 0 có nghiệm x thuộc R
♠ m # -1, có ∆' = (m+1)² - (m+1)(2m+3) = -(m+1)(m+2)
ta biện luận theo dấu của delta':
m│ -∞________ -2 _________ -1 ________ +∞
∆ │≈≈≈≈≈ - ≈≈≈≈ 0 ≈≈≈≈ + ≈≈≈≈ || ≈≈≈≈ - ≈≈≈≈≈≈
* nếu m < -2 => ∆' < 0, m+1 < 0 => f(x) < 0 với mọi x nên f(x) ≥ 0 vô nghiệm
* nếu m = -2 <=> ∆' = 0 và m+1 < 0 <=> f(x) ≤ 0 với mọi x thuộc R
=> f(x) ≥ 0 có nghiệm x = 2 (còn dính đc chổ có dấu "=" )
* -2 < m < -1 <=> ∆' > 0 ; f(x) có 2 lần đổi dấu => f(x) ≥ 0 có nghiệm
* nếu m > -1 => ∆' > 0 và m+1 > 0 => f(x) > 0 với mọi x => f(x) ≥ 0 có nghiệm
Tóm lại các trường hợp: bpt f(x) ≥ 0 có nghệm khi và chỉ khi m ≥ -2
~~~~~~~~~~
Cách khác: giải ngược lại ta tìm m để bpt f(x) ≥ 0 vô nghiệm
tức là f(x) < 0 với mọi x thuộc R
* nếu m = -1 thì như trên f(x) ≥ 0 có nghiêm
* nếu m # -1, f(x) < 0 với mọi x thuộc R khi và chỉ khi
{ ∆' < 0
{ m+1 < 0
<=> { m < -2 hoăc m > -1
----- { m < -1
<=> m < -2
Vậy bpt f(x) ≥ 0 có nghiệm khi và chỉ khi m ≥ -2