Cho \(x,y\ge0;x^2+y^2=1\). Tìm Min, Max: \(P=\sqrt{1+2x}+\sqrt{1+2y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$
$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$
$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$
đề nga sơn kaka , anh vừa làm xong , 3x+5y+3z=51+21
3.(x+y+z)=72-2y
x+y+z=72-2y/3
x+y+z bé hơn hoạc bằng 24
/x+y+z/^2 bé hơn hoạc bằng 24^2 , dấu bằng xảy ra khi nào ???????
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1
1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số (1+2x, 1+2y) và (1,1) ta có:
\(P^2\le\left[\left(\sqrt{1+2x}\right)^2+\left(\sqrt{1+2y}\right)^2\right]\left(1^2+1^2\right)=2\left(2x+2y+1\right)\le2\left(x^2+1+y^2+1+1\right)=2.4=8\)
\(\Rightarrow P\le\sqrt{8}\)
Vậy GTLN của P là \(\sqrt{8}\) khi \(x=y=\dfrac{1}{2}\)
Dấu "=" khi \(\left\{{}\begin{matrix}\sqrt{1+2x}=\sqrt{1+2y}\\x,y>0\\x^2+y^2=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)