K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trường hợp 1: m=0

=>Phương trình sẽ là -3=0(vô lý)

Trường hợp 2: m<>0

\(\Delta=\left(-2m\right)^2-4\cdot m^2\cdot\left(-3\right)=4m^2+12m^2=16m^2>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Vậy Phương trình có hai nghiệm hai nghiệm phân biệt khi m<>0

19 tháng 5 2022

Trường hợp 1: m=0

=>Phương trình sẽ là -3=0(vô lý)

Trường hợp 2: m<>0

Δ=(−2m)2−4⋅m2⋅(−3)=4m2+12m2=16m2>0Δ=(−2m)2−4⋅m2⋅(−3)=4m2+12m2=16m2>0

Do đó: Phương trình luôn có hai nghiệm phân biệt

Vậy Phương trình có hai nghiệm hai nghiệm phân biệt khi m<>0

11 tháng 4 2019

1) Với m= 2 PT trở thành  x 2 − 4 x + 3 = 0  

Giải phương trình tìm được các nghiệm  x = 1 ;   x = 3.  

2) Ta có  Δ ' = m 2 − m 2 + 1 = 1 > 0 , ∀ m .  

Do đó, phương trình (1) luôn có hai nghiệm phân biệt.

Từ giả thiết ta có x i 2 − 2 m x i + m 2 − 1 = 0 , i = 1 ; 2. x i 3 − 2 m x i 2 + m 2 x i − 2 = x i x i 2 − 2 m x i + m 2 − 1 + x i − 2 = x i − 2 , i = 1 ; 2.  

Áp dụng định lí Viét cho phương trình (1) ta có  x 1 + x 2 = 2 m ; x 1 . x 2 = m 2 − 1  

Ta có

  x 1 − 2 + x 2 − 2 = 2 m − 4 ; x 1 − 2 x 2 − 2 = x 1 x 2 − 2 x 1 + x 2 + 4 = m 2 − 1 − 4 m + 4 = m 2 − 4 m + 3

Vậy phương trình bậc hai nhận  x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 ,   x 2 3 − 2 m x 2 2 + m 2 x 2 − 2  là nghiệm là x 2 − 2 m − 4 x + m 2 − 4 m + 3 = 0.

29 tháng 11 2019

Phương trình đã cho tương đương với phương trình

    (m - 1)(m + 3)x = 4(m - 1)

    Với m ≠ 1 và m ≠ -3 phương trình có nghiệm Giải sách bài tập Toán 10 | Giải sbt Toán 10

    Với m = 1 mọi số thực x đều là nghiệm của phương trình;

    Với m = -3 phương trình vô nghiệm.

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

2mx+y=2 và 8x+my=m+2

=>y=2-2mx và 8x+m(2-2mx)=m+2

=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)

=>2(m-2)(m+2)x=m-2 và y=-2mx+2

Nếu m=2 thì hệpt có vô số nghiệm

Nếu m=-2 thìhệ pt vn

Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)

\(\Leftrightarrow-m^2+m+2mx-2=x^2-1\)

\(\Leftrightarrow x^2-1+m^2-m-2mx+2=0\)

\(\Leftrightarrow x^2-2mx+m^2-m+1=0\)

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m-4

Để phương trình có hai nghiệm phân biệt thì 4m-4>0

hay m>1
Để phương trình có nghiệm kép thì 4m-4=0

hay m=1

Để phương trình vô nghiệm thì 4m-4<0

hay m<1

NV
19 tháng 12 2020

\(\Delta'=m^2-\left(m^2-1\right)=1>0\) nên pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2mx_1+m^2-1=0\)

\(\Leftrightarrow x_1^2-2mx_1+m^2=1\)

\(\Rightarrow x_1^3-2mx_1^2+m^2x_1=x_1\)

\(\Rightarrow x_1^3-2mx_1^2+m^2x_1-2=x_1-2\)

Hoàn toàn tương tự, ta có: \(x_2^3-2mx_2^2+m^2x_2-2=x_2-2\)

Giả sử pt \(y^2+by+c=0\)  nhận \(x_1-2\) và \(x_2-2\) là nghiệm

\(\Rightarrow\left\{{}\begin{matrix}x_1-2+x_2-2=-b\\\left(x_1-2\right)\left(x_2-2\right)=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2-4=-b\\x_1x_2-2\left(x_1+x_2\right)+4=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=-b\\m^2-1-4m+4=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-\left(2m-4\right)\\c=m^2-4m+3\end{matrix}\right.\)

Vậy pt đó có dạng: \(x^2-\left(2m-4\right)x+m^2-4m+3=0\)

10 tháng 7 2016

can tui giup k