Chứng tỏ đa thức sau f(x)= \(-x^2+2x-2015\) không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x2 lớn hơn hoặc bằng 0
=> x2 - 2x lớn hơn hoặc bằng 0
=> x2 - 2x + 2015 lớn hớn hoặc bằng 2015 > 0
=> đa thức f(x) ko có nghiệm
\(f\left(x\right)=2x^2+x+1=2\left(x^2+\frac{1}{2}x\right)+1\)
\(=2\left(x^2+2\cdot\frac{1}{4}x+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2\right)+1\)
\(=2\left(x+\frac{1}{4}\right)^2-2\cdot\left(\frac{1}{4}\right)^2+1=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\)
Vì \(2\left(x+\frac{1}{4}\right)^2\ge0\) => \(f\left(x\right)=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)
=> f(x) vô nghiệm
f(x) = x2 -x-x + 3
= (x2 - x) - x+3
= x(x-1)- x+1+2
=x(x-1) - (x-1) + 3
= (x-1)(x-1) +3
= (x-1)2+3
có (x-1 )2 lớn hơn hoặc = 0
suy ra (x-1)2 + 3 lớn hơn 0; suy ra đa thức này vô nghiệm
nhớ k đấy
x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2
Mà (x+1)^2 \(\ge\)0
=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0
Suy ra đa thức vô nghiệm
ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0
=> x2 + 2x + 3 > 0
=> đa thức trên ko có nghiệm
Chúc bn hok tốt!!!^^
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\) > 0 với mọi x
Vậy đa thức f(x) không có nghiệm
Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.
\(\Rightarrow x^2+2x+1+2=0\)
\(\Rightarrow x^2+x+x+1+2=0\)
\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+2=0\)
\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)
\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)
Ta có : \(A\left(x\right)=x^2+2x+2015=x^2+2x+1+2014\)
\(=\left(x+1\right)^2+2014>0\forall x\)do \(\left(x+1\right)^2\ge0\forall x;2014>0\)
Vậy đa thức trên ko có nghiệm ( đpcm )
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
Ta có:f(x)=-x2+2x-2015=-2014-(x2-2x+1)=-2014-(x-1)2
Do (x-1)2\(\ge\)0 với mọi x
=>-(x-1)2\(\le\)0 với mọi x
=>-2014-(x-1)2\(\le\)-2014<0 với mọi x
=>f(x)=0 vô nghiệm hay f(x) không có nghiệm
Ta có : -x2 + 2x - 2015 = - 2014 - ( x2 + 2x -1 ) = - 2014 - ( x - 1 )2
Do đó : ( x - 1 )2 ≥ 0 với mọi x
=> - ( x - 1 )2 ≤ 0 với mọi x
=> f (x) = 0 ( Vô nghiệm ) hay f (x) không có nghiệm