K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

a) Ta có:

\(-\dfrac{3}{4}< \dfrac{a}{12}< -\dfrac{5}{9}\)

hay \(-\dfrac{27}{36}< \dfrac{3a}{36}< -\dfrac{20}{36}\)

\(\Rightarrow-27< 3a< -20\)

\(\Rightarrow3a\in\left\{-26;-25;-24;-23;-22;-21\right\}\)

\(a\) là số nguyên suy ra:

\(a=-8\)

23 tháng 9 2017

a = -7 cũng được mà bn

16 tháng 11 2018

10 tháng 6 2021

b) 

Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó

\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)

Giải:

a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4

\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\) 

Ta có bảng giá trị:

x-314
x47

Vậy \(x\in\left\{4;7\right\}\) 

b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\) 

\(4⋮\left(x-3\right)\) 

\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

Ta thấy: 

Vì chỉ có mỗi 2 là số nguyên tố nên ta có:

x-3=2

x=5

13 tháng 10 2023

\(\dfrac{-3}{4}< \dfrac{a}{12}< \dfrac{-5}{9}\)

\(\Rightarrow\dfrac{-27}{36}< \dfrac{3a}{36}< \dfrac{-20}{36}\)

\(\Rightarrow-27< 3a< -20\)

\(\Rightarrow a=\left\{-8;-7\right\}\)

DT
15 tháng 6 2023

a) \(\dfrac{7}{4}< \dfrac{a}{8}< 3\\ =>\dfrac{7}{4}.8< a< 3.8\\ =>14< a< 24\\ =>a\in\left\{15;16;17;...;23\right\}\)

b) \(\dfrac{2}{3}< \dfrac{a-1}{6}< \dfrac{8}{9}\\ =>\dfrac{2}{3}.6< a-1< \dfrac{8}{9}.6\\ =>4< a-1< \dfrac{16}{3}\\ =>4+1< a< \dfrac{16}{3}+1\\ =>5< a< \dfrac{19}{3}\\ =>a=6\)

b) \(\dfrac{2}{3}< a-\dfrac{1}{6}< \dfrac{8}{9}\\ =>\dfrac{2}{3}+\dfrac{1}{6}< a< \dfrac{8}{9}+\dfrac{1}{6}\\ =>\dfrac{5}{6}< a< \dfrac{19}{18}\\ =>a=1\)

c) \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\\ =>\dfrac{24}{18}< \dfrac{24}{6a}< \dfrac{24}{9}\\ =>9< 6a< 18\\ =>\dfrac{9}{6}< a< \dfrac{18}{6}\\ =>1,5< a< 3\\ =>a=2\)

26 tháng 2 2018

Có \(a^4+4=a^4+4a^2+4-4a^2\)

\(=\left(a^2+2\right)^2-4a^2=\left(a^2-2a+2\right)\left(a^2+2a+2\right)\)

\(\Rightarrow a^4+4⋮a^2+2a+2;a^4+4⋮a^2-2a+2\)

Mà \(a^4+4\)là số nguyên tố  nên có 1 nghiệm là 1 và 1 nghiệm là chính nó ; \(\hept{\begin{cases}a^2+2a+2=\left(a+1\right)^2+1\ge1\\a^2-2a+2=\left(a-1\right)^2+1\ge1\end{cases}}\)

=> có 2 trường hợp xảy ra :

TH1 : \(a^2+2a+2=1\Leftrightarrow a^2+2a+1=0\Leftrightarrow\left(a+1\right)^2=0\Leftrightarrow a=-1\)( thỏa mãn điều kiện a nguyên )

Thay vào có : \(a^4+4=1+4=5\)( thỏa mãn )

TH2 : \(a^2-2a+2=1\Leftrightarrow a^2-2a+1=0\Leftrightarrow\left(a-1\right)^2=0\Leftrightarrow a=1\)( thỏa mãnđiều kiện a nguyên )

Thay vào có : \(a^4+4=1+4=5\)( thỏa mãn )

Vậy \(a\in\left\{1;-1\right\}\)thì \(a^4+4=5\)là số nguyên tố 

Tích cho mk nhoa !!! ~~

26 tháng 2 2018

Bạn Âu Dương Thiên Vy đúng rồi . bạn tham khảo bạn ấy đi 

Chúc học giỏi !!!