K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

a) Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.

b)

Ta có ∆DEB = ∆DEA(c.g.c) nên ˆB=ˆA1B^=A1^. Tương tự ˆC=ˆA2C^=A2^.

Suy ra ˆA=ˆA1+ˆA2=ˆB+ˆC

17 tháng 9 2023

a) Ta có: đường trung trực của hai cạnh AB và AC cắt nhau tại O và O nằm trong tam giác. Nên O là giao điểm của ba đường trung trực của tam giác ABC.

Mà M là trung điểm của cạnh BC nên OM là đường trung trực của đoạn thẳng BC hay \(OM \bot BC\).

b) Ta có: Giao của ba đường trung trực trong tam giác thì cách đều ba đỉnh của tam giác đó.

Hay OB = OC nên tam giác OBC cân tại O. Suy ra: \(\widehat {OBC} = \widehat {OCB}\) hay \(\widehat {OBM} = \widehat {OCM}\). ( tính chất tam giác cân)

Xét tam giác OMB và tam giác OMC có:

     OB = OC;

     \(\widehat {OBM} = \widehat {OCM}\);

     MB = MC (M là trung điểm của đoạn thẳng BC).

Vậy \(\Delta OMB = \Delta OMC\)(c.g.c)

Do đó,\(\widehat {MOB} = \widehat {MOC}\) ( 2 góc tương ứng).

25 tháng 10 2019

+) Xét tam giác ADE và BDE có:

DE chung

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

DA = DB ( vì DE là đường trung trực của AB)

Suy ra: ∆ADE = ∆ BDE ( cạnh huyền – cạnh góc vuông).

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+ Chứng minh tương tự ta có: ∆ADF = ∆ CDF ( cạnh huyền – cạnh góc vuông).

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Từ (1) và (2) suy ra: Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

8 tháng 5 2018

Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.

3 tháng 4 2018

a) Vì ba đường trung trực của tam giác đồng quy nên D thuộc đường trung trực của cạnh BC. Mặt khác đường trung trực của cạnh BC đi qua trung điểm của BC nên D là trung điểm của cạnh BC.

b) Ta có: Tam giác DEA = tam giác DEA (c.g.c) nên góc B = góc A1 

                                                                                <=> góc C = góc A2

=> Góc A = góc A1 + góc A2 = góc B + góc C.

3 tháng 4 2018

xét tam giác sai rồi

Vì AC là đường trung trực của BB' nên CB=CB'

=>ΔCBB' cân tại C

hay \(\widehat{BCA}=\widehat{B'CA}\)

Vì AB là đường trung trực của CC' nên BC=BC'

=>ΔBCC' cân tại B

hay \(\widehat{CBA}=\widehat{C'BA}\)

Vì AB và AC lần lượt là các đường phân giác của các góc CBB' và BCB'

và AB cắt AC tại A

nên A là điểm cách đều ba cạnh của ΔA'BC

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Vì \(ED//AB \Rightarrow \Delta DEC\backsim\Delta ABC\) (định lí)

b) Vì \(ED//AB \Rightarrow \widehat {CDE} = \widehat {CAB}\) (hai góc đồng vị)

Mà \(\widehat {CAB} = \widehat {A'}\). Do đó, \(\widehat {CDE} = \widehat {B'A'C'}\).

Xét tam giác \(A'B'C'\) và tam giác \(DEC\) ta có:

\(\widehat {B'A'C'} = \widehat {CDE}\) (chứng minh trên)

\(A'C' = CD\) (giải thuyết)

\(\widehat {C'} = \widehat C\) (giả thuyết)

Do đó, \(\Delta A'B'C' = \Delta DEC\) (g.c.g)

c) Vì tam giác \(\Delta A'B'C'\backsim\Delta DEC\) (tính chất)

Mà \(\Delta DEC\backsim\Delta ABC\) nên \(\Delta ABC\backsim\Delta A'B'C'\).