K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=-2 và y=b vào (P), ta được:

\(b=\left(-2\right)^2\cdot0.2=0.8\)

Vì trong (P) thì f(x)=f(-x)

nên A'(2;0,8) thuộc (P)

b: Thay x=c và y=6 vào (P), ta được:

\(0,2c^2=6\)

nên \(c=\sqrt{30}\)

Vì trong (P) thì f(x)=f(-x) nên \(D\left(\sqrt{30};-6\right)\in\left(P\right)\)

12 tháng 9 2023

a) Vì đồ thị hàm số đi qua điểm \(M\left( {1; - 2} \right)\)nên ta có:

\( - 2 = a.1 - 4 \Leftrightarrow a =  - 2 + 4 = 2\)

Hàm số cần tìm là \(y = 2x - 4\) có hệ số góc \(a = 2\).

b) Cho \(x = 0 \Rightarrow y =  - 4\) ta được điểm \(A\left( {0; - 4} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{4}{2} = 2\) ta được điểm \(B\left( {2;0} \right)\) trên \(Ox\).

Đồ thị hàm số là đường thẳng đi qua hai điểm \(A\) và \(B\).

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-6x=-x^2-4\)

=>\(x^2-6x+x^2+4=0\)

=>\(2x^2-6x+4=0\)

=>\(x^2-3x+2=0\)

=>(x-1)(x-2)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Khi x=1 thì \(y=-1^2-4=-1-4=-5\)

Khi x=2 thì \(y=-2^2-4=-8\)

Vậy: A(1;-5); B(2;-8)

\(y_A+y_B=\left(-5\right)+\left(-8\right)=-13\)

2 tháng 3 2020

- Thay \(x=a+2,y=3a^2+2a\)  vào hàm số f(X) ta được :

\(3a^2+2a=a\left(a+2\right)+\frac{8}{9}\)

=> \(3a^2+2a=a^2+2a+\frac{8}{9}\)

=> \(3a^2+2a-a^2-2a-\frac{8}{9}=0\)

=> \(2a^2-\frac{8}{9}=0\)

=> \(a^2=\frac{4}{9}\)

=> \(\orbr{\begin{cases}a=-\frac{2}{3}\\a=\frac{2}{3}\end{cases}}\)

Vậy a có các giá trị là \(a=-\frac{2}{3},a=\frac{2}{3}\)

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

13 tháng 7 2024

Đúng 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}0,2x^2-x=0\\y=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(0,2x-1\right)=0\\y=x\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(5;5\right)\right\}\)

Thay x=3 và y=2 vào y=ax2, ta được:

9a=2

hay a=2/9

NV
23 tháng 4 2022

\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)

\(A\left(1;1-m\right)\)

Phương trình tiếp tuyến d tại A có dạng:

\(y=\left(4-4m\right)\left(x-1\right)+1-m\)

\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)

\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)

29 tháng 5 2022

y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m

A(1;1−m)A(1;1−m)

Phương trình tiếp tuyến d tại A có dạng:

y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m

⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0

d(B;d)=∣∣∣34(4−4m)−1+3m−3∣∣∣√(4−4m)2+1=1√(4−4m)2+1≤1d(B;d)=|34(4−4m)−1+3m−3|(4−4m)2+1=1(4−4m)2+1≤1

Dấu "=" xảy ra khi và chỉ khi 4−4m=0⇒m=1

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Hàm số \(y = 4x + 2\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = 4;b = 2\).

b) Hàm số \(y = 5 - 3x =  - 3x + 5\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a =  - 3;b = 5\).

c) Hàm số \(y = 2 + {x^2}\) không phải là hàm số bậc nhất vì không có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\).

d) Hàm số \(y =  - 0,2x\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a =  - 0,2;b = 0\).

e) Hàm số \(y = \sqrt 5 x - 1\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = \sqrt 5 ;b =  - 1\).

12 tháng 9 2023

a) \(y=4x+2\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)

b) \(y=5-3x\Rightarrow\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.\)

c) \(y=2+x^2\) không phải hàm số bậc nhất.

d) \(y=0,2x\Rightarrow\left\{{}\begin{matrix}a=-0,2\\b=0\end{matrix}\right.\)

e) \(y=\sqrt[]{5}x-1\Rightarrow\left\{{}\begin{matrix}a=\sqrt[]{5}\\b=-1\end{matrix}\right.\)