cho ba chu so 3,1,6.Có thể lập được bao nhiêu số có ba chữ số khác nhau từ các số trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách
2:
\(\overline{abcd}\)
d có 1 cách chọn
a có 3 cách chọn
b có 2 cách chọn
c có 1 cách chọn
=>Có 3*2*1*1=6 cách
1: \(\overline{abc}\)
a có 3 cách
b có 3 cách
c có 2 cách
=>Có 3*3*2=18 cách
Vì các số cần lập là số có 3 chữ số nên hàng cao nhất là hàng trăm.Ta thấy:
-Có 4 trường hợp có thể làm chữ số hàng trăm (trừ số 0)
-Có 4 trường hợp có thể làm chữ số hàng chục (thêm số 0)
-Có 3 trường hợp có thể làm chữ số hàng đơn vị
Vậy có số các số thỏa mãn yêu cầu đề bài là:
4x4x3=48(số)
Đáp số:48 số
Lời giải:
Gọi số thỏa mãn có dạng $\overline{a_1a_2a_3}$
Để số trên chia hết cho $3$ thì $a_1+a_2+a_3\vdots 3$
Thấy $3\leq a_1+a_2+a_3\leq 12$ nên $a_1+a_2+a_3\in \left\{3;6;9;12\right\}$
+) Để $a_1+a_2+a_3=3$ thì $(a_1,a_2,a_3)=(0,1,2)$
Ta lập được $2.2.1=4$ số thỏa mãn
+) Để $a_1+a_2+a_3=6$ thì $(a_1,a_2,a_3)=(0,1,5); (0,2,4); (1,2,3)$
Ta lập được $2.2.1+2.2.1+3.2.1=14$ số thỏa mãn
+) Để $a_1+a_2+a_3=9$ thì $(a_1,a_2,a_3)=(0,4,5); (1,3,5); (2,3,4)$
Ta lập được: $2.2.1+3.2.1+3.2.1=16$ số thỏa mãn
+) Để $a_1+a_2+a_3=12$ thì $(a_1,a_2,a_3)=(3,4,5)$
Ta lập được: $3.2.1=6$ số
Tóm lại lập được: $4+14+16+6=40$ số.