K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEHK vuông tại H và ΔEDM vuông tại D có 

\(\widehat{HEK}=\widehat{DEM}\)

Do đó:ΔEHK\(\sim\)ΔEDM

Suy ra: \(\widehat{EKH}=\widehat{EMD}\)

b: Xét ΔEDK và ΔEFM có 

\(\widehat{DEK}=\widehat{MEF}\)

\(\widehat{EDK}=\widehat{F}\)

Do đó: ΔEDK\(\sim\)ΔEFM

Suy ra: DK/MF=EK/EM

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

18 tháng 3 2023

bạn ơi, góc DKI vuông góc từ đâu vậy?

 

a: Xét ΔEDK có 

EM là đường cao

EM là đường phân giác

Do đó: ΔEDK cân tại E

b: Xét ΔEDM và ΔEKM có

ED=EK

\(\widehat{DEM}=\widehat{KEM}\)

EM chung

DO đó: ΔEDM=ΔEKM

Suy ra: DM=DK

mà ED=EK

nên EM là đường trung trực của DK

3 tháng 2 2019

tu  ve hinh :

cau b la vuong goc phai k

a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)

goc ADB = goc ADC do AD | BC (GT)

=> tamgiac ADB = tamgiac ADC (ch - gn)

=> BD = DC (dn)

b, xet tamgiac BHD va tamgiac CKD co :  BD = DC (Cau a)

goc ABC = goc ACB (cau a)

goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)

=> tamgiac BHD = tamgiac CKD (ch - gn)

=> HD = DK (dn)

c, xet tamgiac AHD va tamgiac AKD co : AD chung

HD = DK (cau b) 

goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt) 

=> tamgiac AHD = tamgiac AKD  (ch - cgv)

=> tamgiac AHK can tai A (dn)

=> goc AHK = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2

=> goc AHK = goc ABC  2 goc nay dong vi

=> HK // BC (tc)

d, tu ap dung py-ta-go 

4 tháng 2 2019

bài 2 nữa ạ

a: Xét ΔEDH và ΔEKH có

ED=EK

\(\widehat{DEH}=\widehat{KEH}\)

EH chung

Do đó: ΔEDH=ΔEKH

Suy ra: DH=DK

b: Ta có: ΔEDH=ΔEKH

nên \(\widehat{EDH}=\widehat{EKH}\)

hay \(\widehat{EKH}=90^0\)

a, Xét \(\Delta\)DEF và \(\Delta\)HED ta cs 

^EDF = ^EHD = 900

^E - chug 

=> \(\Delta\)DEF đồng dạng \(\Delta\)HED 

b, Xét \(\Delta\)DEF và \(\Delta\)HDF ta cs

^EDF = ^DHF = 900

^F - chug 

=> \(\Delta\)DEF đồng dạng \(\Delta\)HDF 

=> \(\frac{DF}{EF}=\frac{FH}{DF}\)( đ/n )

=> DF=  FH . EF

c, chưa nghĩ ra