Cho biểu thức S = 2+2+22+23+............+299
Hãy so sánh biểu thức S với 10x295
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)S = 1 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29
2S = 2.(1 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
2S = 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210
S = (2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210) - (1 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
S = 210 - 1
Suy ra: S = \(\frac{2^{9+1}-1}{2-1}\)
S = \(\frac{2^{10}-1}{1}\)
S = 210 - 1
S = 1023
b)Mình không thể giúp bạn vì mình không rõ 5.28 hay (5.2)8
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
\(S=1+2+2^2+2^3+...+2^9\)
Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)
\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\)
Vậy \(S< 5.2^8\)
\(#Tuyết\)
2S=2+2^2+...+2^10
=>S=2^10-1=1023
5*2^8=256*5=1280
=>S<5*2^8
B = 1 2 ! + 2 3 ! + 3 4 ! + ... + 99 100 ! B = 2 − 1 2 ! + 3 − 1 3 ! + 4 − 1 4 ! + ... + 100 − 1 100 ! B = 2 2 ! − 1 2 ! + 3 3 ! − 1 3 ! + 4 4 ! − 1 4 ! + ... + 100 100 ! − 1 100 ! B = 1 1 ! − 1 2 ! + 1 2 ! − 1 3 ! + 1 3 ! − 1 4 ! + ... + 1 99 ! − 1 100 ! B = 1 − 1 100 ! < 1
Vậy B<1
5S=5(1+5+52+...+52017)
5S=5+52+...+52018
5S-S=(5+52+...+52018)-(1+5+52+...+52017)
4S=52018-5
tính xong 4S rồi đó đến đây bạn thích làm thế nào thì làm
5S=5(1+5+52+...+52017)
5S=5+52+...+52018
5S-S=(5+52+...+52018)-(1+5+52+...+52017)
4S=52018-5
Để diện tích của mảnh vườn không nhỏ hơn 48 \({m^2}\)thì
\(S(x) \ge 48 \Rightarrow - 2{x^2} + 20x \ge 48 \Leftrightarrow - 2{x^2} + 20x - 48 \ge 0\)
S = 2+2+22+23+............+299
2S = 22+22+23+............+2100
2S - S = S = 2100 = 25.295 = 32.295 > 10.295