CM CÁC BẤT ĐẲNG THỨC SAU
A) \(A^2+B^2\ge AB+AB\)
B) \(A^3+B^3\ge A^2B+AB^2\)
C) \(A^4+B^4\ge A^3B+AB^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)\(A^2+B^2\ge AB+AB\)
\(\Leftrightarrow\)\(A^2+B^2\ge2AB\)
\(\Leftrightarrow A^2-2AB+B^2\ge0\)
\(\Leftrightarrow\left(A+B\right)^2\ge0\)(luôn đúng)
Vậy \(A^2+B^2\ge AB+AB\)(đpcm)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)
\(\Leftrightarrow a^4+b^4+2a^2b^2-2a^3b-2ab^3\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a-b\right)^2\ge0\) (luôn đúng)
A)
\(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\\ \Leftrightarrow2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\)
\(2A^2+2B^2\ge A^2+2AB+B^2\\ \Leftrightarrow A^2+B^2\ge2AB\\ \Leftrightarrow A^2+B^2-2AB\ge0\)
\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (1)
\(A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow A^2+B^2\ge2BA\\ \Leftrightarrow A^2+B^2-2BA\ge0\)
\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (2) Từ (1), (2) ta có: \(2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\left(đpcm\right)\)Ta có : \(a^2+b^2+4\ge ab+2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+4\ge ab+2a+2b\)
\(\Leftrightarrow2\left(a^2+b^2+4\right)\ge2\left(ab+2a+2b\right)\)
\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4a+4b\)
\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+4+4-2ab-4a-4b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)
Bất đẳng thức cuối cùng luôn đúng nên ta có đpcm
Dấu đẳng thức xảy ra khi và chỉ khi a=b=2
A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)
B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)
áp dụng BĐT AM-GM
\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)
cộng 2 vế của BĐT cho nhau
\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)
C)tương tự câu B) ta có
\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)
cộng từng vế của BĐT ta có đpcm