cho M = x^2 - 4x tìm GTNN cua M
c/m D = x^2 - 2x + 5 > 0 \(\forall\)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)
\(=\left(x-1\right)^2+4\)
Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)
Vậy Min A=4 tại x=1
b,\(B=2x^2-6x=2\left(x^2-3x\right)\)
\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)
(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)
Bài 2
a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)
\(=-\left(x^2-2.x.3+3^2-9-3\right)\)
\(=-\left[\left(x-3\right)^2-12\right]\)
\(=-\left(x-3\right)^2+12\)
Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)
\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)
Vậy Max A =12 tại x=3
b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)
c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))
Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)
Mình làm tiếp phần của Dũng Nguyễn nha.
b) \(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x
Vậy \(4x-x^2-5< 0\) với mọi x
c) \(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Vậy \(x^2-x+1>0\) với mọi x
d) \(-x^2+2x-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-1\right)^2-3\le-3\)
\(\Rightarrow-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi x
\(\Leftrightarrow\left[{}\begin{matrix}4x-2m-\dfrac{1}{2}>-x^2+2x+\dfrac{1}{2}-m\\4x-2m-\dfrac{1}{2}< x^2-2x-\dfrac{1}{2}+m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-\dfrac{1}{4}-m>0\\x^2-6x+3m>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1+\dfrac{1}{4}+m< 0\\9-3m< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -\dfrac{5}{4}\\m>3\end{matrix}\right.\)
1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)
\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
2) \(x^2-4x+5\)
\(=-(4x-x^2-5 )\)
\(= -[-(x^2-4x)-5 ]\)
\(=-[ -(x^2-2x.2+4-4)-5 ]\)
\(= -[-(x-2)^2+4-5 ]\)
\(= -[-(x-2)^2-1 ]\)
Vì \(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)
\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)
\(\Rightarrow x^2-4x+5>0\)\(\forall x\)
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0
Bài 2: Tìm GTNN :
A= x^2 -2x -4
B= x^2 -x +5
C= 4x^2 +2x -9
D= 2x^2 -4x +7
Giúp tớ với, tớ đang cần gấp
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
M = x^2 - 4x
= x^2 - 4x + 4 - 4
= (x^2 - 4x + 4 ) - 4
=(x - 2 )^2 - 4
Vì (x - 2 )^2 \(\ge\)0 => (x - 2 )^2 - 4 \(\ge\) - 4 ( với \(\forall\) x )
Dấu '' = '' sảy ra <=> (x - 2 )^2 = 0
<=> x - 2 = 0
<=> x = 2
Vậy min M = - 4 Khi x = 2
M = x2 - 4x = (x2 - 4x + 4) - 4 = (x - 2)2 - 4
Vì (x - 2)2 ≥ 0 với mọi x
Mà (x - 2)2 - 4 ≥ - 4 với mọi x
Vậy M đạt giá trị nhỏ nhất <=> (x - 2)2 = 0 <=> x = 2
D = x2 - 2x + 5 = (x2 - 2x + 1) + 4 = (x - 1)2 + 4
Vì (x - 1)2 ≥ 0 với mọi x
Mà (x - 1)2 + 4 ≥ 4 với mọi x
=> (x - 1)2 + 4 > 0 (luôn dương với mọi x)
=> x2 - 2x + 5 > 0 (luôn dương với mọi x)