K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

M = x^2 - 4x 

=  x^2 - 4x + 4 - 4

=  (x^2 - 4x + 4 ) - 4

=(x - 2 )^2  - 4

Vì (x - 2 )^2  \(\ge\)0  => (x - 2 )^2 - 4 \(\ge\) - 4    ( với  \(\forall\) x )

Dấu  '' = '' sảy ra  <=>  (x - 2 )^2  = 0

                              <=>  x  -  2   = 0

                               <=>  x    =  2    

Vậy   min M =  - 4     Khi   x  =  2     

18 tháng 8 2021

M = x2 - 4x = (x2 - 4x + 4) - 4 = (x - 2)2 - 4

Vì (x - 2)2 ≥ 0 với mọi x

Mà (x - 2)2 - 4 ≥ - 4 với mọi x

Vậy M đạt giá trị nhỏ nhất <=> (x - 2)2 = 0 <=> x = 2

D = x2 - 2x + 5 = (x2 - 2x + 1) + 4 = (x - 1)2 + 4

Vì (x - 1)2 ≥ 0 với mọi x

Mà  (x - 1)2 + 4 ≥ 4 với mọi x

=> (x - 1)2 + 4 > 0 (luôn dương với mọi x)

=> x2 - 2x + 5 > 0 (luôn dương với mọi x)

19 tháng 8 2018

1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)

\(=\left(x-1\right)^2+4\)

Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)

Vậy Min A=4 tại x=1

b,\(B=2x^2-6x=2\left(x^2-3x\right)\)

\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)

(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)

Bài 2

a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)

\(=-\left(x^2-2.x.3+3^2-9-3\right)\)

\(=-\left[\left(x-3\right)^2-12\right]\)

\(=-\left(x-3\right)^2+12\)

Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)

\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)

Vậy Max A =12 tại x=3

b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)

Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)

c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)

\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)

Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))

Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)

19 tháng 8 2018

Mình làm tiếp phần của Dũng Nguyễn nha.

b) \(4x-x^2-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2.x.2+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\)

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Vậy \(4x-x^2-5< 0\) với mọi x

c) \(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

Vậy \(x^2-x+1>0\) với mọi x

d) \(-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x^2-2x+1+3\right)\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-1\right)^2-3\le-3\)

\(\Rightarrow-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi x

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

18 tháng 2 2021

\(\Leftrightarrow\left[{}\begin{matrix}4x-2m-\dfrac{1}{2}>-x^2+2x+\dfrac{1}{2}-m\\4x-2m-\dfrac{1}{2}< x^2-2x-\dfrac{1}{2}+m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-\dfrac{1}{4}-m>0\\x^2-6x+3m>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1+\dfrac{1}{4}+m< 0\\9-3m< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -\dfrac{5}{4}\\m>3\end{matrix}\right.\)

 

28 tháng 7 2017

1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)

\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)

\(\Leftrightarrow4x=10\)

\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

2) \(x^2-4x+5\)

\(=-(4x-x^2-5 )\)

\(= -[-(x^2-4x)-5 ]\)

\(=-[ -(x^2-2x.2+4-4)-5 ]\)

\(= -[-(x-2)^2+4-5 ]\)

\(= -[-(x-2)^2-1 ]\)

\(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)

\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)

\(\Rightarrow x^2-4x+5>0\)\(\forall x\)

2

\(x^2-4x+5=x^2-4x+4+1\\ =\left(x-2\right)^2+1>0\)

16 tháng 10 2016

Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0

​Bài 2: Tìm GTNN :​

A= x^2 -2x -4

B= x^2 -x +5

C= 4x^2 +2x -9

D= 2x^2 -4x +7

Giúp tớ với, tớ đang cần gấp

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)