K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Đề không đầy đủ

11 tháng 5 2020

Ta có: 

\(4a^2+4ab+4b^2+3=\left(2a+b\right)^2+3b^2+3>0;\forall a,b\)

Do đó: 

\(\left(a-b\right)\left(4a^2+4ab+4b^2+3\right)=0\)

<=> \(a=b\)

Bạn nên kiểm tra lại đề. Bài trên không phải là phương trình đâu bạn nhé!

11 tháng 5 2020

Đáp án: a=b

              Giải

Ta có :
4a2+4ab+4b2+3=4a2+4ab+b2+3b2+3=(2a+b2)+3b2+3>3,∀a,b

→(a−b)(4a2+4ab+4b2+3)=0

↔a−b=0

↔a=b

12 tháng 6 2017

3a^2 + b^2  - 4ab = 0
<=> a^2 - 2ab + b^2 + 2a^2 - 2ab = 0
<=> (a-b)(3a-b) = 0
=> a = b  hoặc a = b/3
Mà b>a>0 => a = b/3
Thế vào A ta có: (b/3  -  b) / (b/3  +  b)
Rút gọn ta được: A = (1/3  -  1) / (1/3  +  1) = -1/2

22 tháng 5 2023

a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.

b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.

c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.

22 tháng 5 2023

 bạn có thể giải rõ hơn đc ko ạ

14 tháng 7 2019

 bạn có thể phân tích thành nhân tử rồi rút gọn

vd: như tử của cái bên trái ta tách đc thế này: 3a^2-3ab+ab-b^2 bằng 3a(a-b)+b(a-b) bằng (3a+b)(a-b) chẳng hạn là vậy

Chúc bạn giải thành công!:)) 

\(A=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}:\frac{3a^2-4ab+b^2}{3a^2+2ab-b^2}\)

\(=\frac{3a^2-2ab-b^2}{2a^2+ab-b^2}.\frac{3a^2+2ab-b^2}{3a^2-2ab-b^2}\)

\(=\frac{\left(3a^2-2ab-b^2\right)\left(3a^2+2ab-b^2\right)}{\left(2a^2+ab-b^2\right)\left(3a^2-2ab-b^2\right)}\)

\(=\frac{9a^4+6a^3b-3a^2b^2-6a^3b-4a^2b^2+2ab^3-3a^2b^2-2ab^3+b^4}{6a^4-4a^3b-2a^2b^2+3a^3b-2a^2b^2-ab^3-3a^2b^2+2ab^3+b^4}\)

\(=\frac{9a^4-10a^2b^2+b^4}{6a^4-a^3b-7a^2b^2+ab^3+b^4}\)

\(=\frac{9a^4-9a^2b^2-a^2b^2+b^4}{6a^4-6a^2b^2-a^2b^2+b^4-a^3b+ab^3}\)

\(=\frac{9a^2\left(a^2-b^2\right)-b^2\left(a^2-b^2\right)}{6a^2\left(a^2-b^2\right)-b^2\left(a^2-b^2\right)-ab\left(a^2-b^2\right)}\)

\(=\frac{\left(a^2-b^2\right)\left(9a^2-b^2\right)}{\left(a^2-b^2\right)\left(6a^2-b^2-ab\right)}\)

\(=\frac{9a^2-b^2}{6a^2-b^2-ab}\)

\(=\frac{\left(3a-b\right)\left(3a+b\right)}{6a^2-3ab+2ab-b^2}\)

\(=\frac{\left(3a-b\right)\left(3a+b\right)}{3a\left(a-b\right)+2b\left(a-b\right)}\)

\(=\frac{\left(3a-b\right)\left(3a+b\right)}{\left(a-b\right)\left(3a+2b\right)}\)

23 tháng 5 2022

`a^2+4ab-5b^2=0`

`<=>a^2+4ab+4b^2-9b^2=0`

`<=>(a+2b)^2-9b^2=0`

`<=>(a+2b-3b)(a+2b+3b)=0`

`<=>(a-b)(a+5b)=0`

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-5b\end{matrix}\right.\)

`Q={2a-b}/{a-b}+{3a-2b}/{a+b}`

Với `a=b` `=>` giá trị vô nghĩa

Với `a=-5b` 

`Q={-10b-b}/{-5b-b}+{-15b-2b}/{-5b+b}`

`Q={-11b}/{-6b}+{-17b}/{-4b}`

`Q=11/6+17/4`

`Q=73/12`