Cho tam giác ABC với AC < AB. Trên tia đối của BC lấy điểm D saoc ho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Vẽ các đoạn thẳng AD, AE
a) Hãy so sánh góc ADC và góc AEB
b) Hãy so sánh các đoạn AD và AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+ Trong ΔABC có: góc ABC đối diện cạnh AC, góc ACB đối diện cạnh AB.
b) ΔAED có:
⇒ AE < AD hay AD > AE
(Bạn tự vẽ hình giùm)
a/ Ta có AC > AB (gt) => \(\widehat{AEB}< \widehat{ADC}\)(quan hệ giữa góc và cạnh đối diện)
b/ Ta có EC < EB => AE < AB (quan hệ giữa đường xiên và hình chiếu) (1)
và CB < CD => AB < AD (quan hệ giữa đường xiên và hình chiếu) (2)
Từ (1) và (2) => AE < AD
xét tam giác ABC có : AC < AB
=> góc ABC < góc ACB (đl)
góc ABC + góc ABD = 180
góc ACB + góc ACE = 180
=> góc ACE < góc ABD
có tam giác ACE và tam giác ABD lần lượt cân tại C và B
=> góc E = (180 - góc ACE) : 2 và góc D = (180 - góc ABD) : 2 (đl)
=> góc E > góc D
a)
+ Trong ΔABC có: góc ABC đối diện cạnh AC, góc ACB đối diện cạnh AB.
b) ΔAED có:
⇒ AE < AD hay AD > AE
vao huong dan giai toan lop 7 tap 2 trang 63 co het
minh thu roi dam bao 100 phan tram
a.
b. Xét ΔADE có góc ADE < góc AED (chứng minh ở phần a)
=> AE < AD (Quan hệ giữa góc - cạnh đối diện trong tam giác)
a) So sánh ˆADCADC^ và ˆAECAEC^
Ta có: AC < AB
=> ˆABC<ˆACBABC^<ACB^ (1)
Vì AC = EC => ∆AEC cân tại C
=> ˆAEC<ˆCAEAEC^<CAE^
Mà ˆACB=ˆAEC+ˆEACACB^=AEC^+EAC^ (góc ngoài tại C của ∆AEC)
=> ˆACB=2.ˆAECACB^=2.AEC^ (2)
Chứng minh tương tự : ˆABC=2ˆADCABC^=2ADC^ (3)
Từ (1), (2), (3) => 2ˆAEC=2ˆADC2AEC^=2ADC^ hay ˆAEC=ˆADCAEC^=ADC^
b) ∆AED có:
ˆAED=ˆADEAED^=ADE^ (chứng minh trên) => AD = AE