Phần c ạ, em cần ngay bây giờ ạ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
G
0
TM
0
NK
1
1 tháng 1 2022
\(a^3+b^3=2021c^3\\ \Leftrightarrow a^3+b^3+c^3=2022c^3⋮6\left(2022⋮6\right)\left(1\right)\)
Mặt khác: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)
Có \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) là 3 cặp số nguyên liên tiếp nên chia hết cho 6
Do đó \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Kết hợp (1) ta được đpcm
\(P=\dfrac{4}{3}.\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{4}{3}\left(1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}\right)=\dfrac{4}{3}-\dfrac{4}{3}.\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le\dfrac{4}{3}\)
\(P_{max}=\dfrac{4}{3}\) khi \(x=1\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow P\ge0\)
\(P_{min}=0\) khi \(x=0\)
a: Ta có: \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)