K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

NT:(2x+1)^4>=0.Dấu ''='' xảy ra khi x=-1/2

=>(2x+1)^4-1>=-1.Dấu"=" xẩy ra khi x=-1/2

Vậy Min của biểu thức trên là -1

a: \(\left(2x+1\right)^4-1\ge-1\)

Dấu '=' xảy ra khi x=-1/2

b: \(\left(x^2-16\right)^2+\left|y-3\right|-2\ge-2\)

Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(4;3\right);\left(-4;3\right)\right\}\)

21 tháng 6 2016

a)Ta thấy:

\(\left(2x+\frac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^2-\frac{5}{6}\ge0-\frac{5}{6}=-\frac{5}{6}\)

\(\Rightarrow A\ge-\frac{5}{6}\)

Dấu "=" <=>x=-1/6

Vậy MinA=-5/6<=>x=-1/6

b)Ta thấy:\(\hept{\begin{cases}\left|2x+3\right|\\\left|y-\frac{1}{2}\right|\end{cases}\ge}0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|\ge0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)

\(\Rightarrow B\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|2x-3\right|=0\\\left|y-\frac{1}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy...

\(2x^2+10x-1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)

\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)

\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)

\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)

9 tháng 8 2016

Min B= -1 khi x=0

Min C=0 khi x=0

31 tháng 1 2018

\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)

dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)

vậy GTNN của C là -3 khi x=1, y=-1

15 tháng 3 2018

ap dung bunhiacopki

\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)

do do P>=4+2013=2017

= xảy ra <=>x=y=1

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0

14 tháng 3 2017

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3