K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

Phương trình hoành độ giao điểm:

\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=1+8m>0\Rightarrow m>-\dfrac{1}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\)

\(\Rightarrow m=1\) (thỏa mãn)

22 tháng 1 2024

\(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)

\(\Delta=\left(4m+1\right)^2-4\cdot1\cdot2\left(m-4\right)=16m^2+8m+1-8m+32=16m^2+33\ge33>0\forall m\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}\\x_2=\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}\end{matrix}\right.\) 

Mà: \(x_2-x_1=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}-\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}+\left(4m+1\right)-\sqrt{16m^2+33}}{2}=17\) 

\(\Leftrightarrow\dfrac{-2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\sqrt{16m^2+33}=-17< 0\)

Vậy không có m thỏa mãn 

2 tháng 6 2015

m là số tự nhiên nên ta chọn m nhỏ nhất là 0.

Khi đó m . 7920 = 0 . 7920 = 0 = 02

         Vậy GTNN của m là 0 thỏa mãn điều kiện

26 tháng 12 2018

9 tháng 1 2021

\(\left\{{}\begin{matrix}mx-y=5\left(1\right)\\2x+3my=7\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3m^2x-3my=3m5\\2x+3my=7\end{matrix}\right.\)

=> \(x\left(3m^2+2\right)=15m+7\)<=> \(x=\dfrac{15m+7}{3m^2+2}\)

Thay (1) : \(y=mx-5=\dfrac{15m^2+7m}{3m^2+2}-5=\dfrac{7m-10}{3m^2+2}\)

Ta có : \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.< =>\left\{{}\begin{matrix}15m+7>0\\7m-20< 0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m>-\dfrac{7}{15}\\m< \dfrac{10}{7}\end{matrix}\right.\)

=> m\(\in\left(-\dfrac{7}{15};\dfrac{10}{7}\right)\)

 

7 tháng 7 2019

24 tháng 11 2019

Đặt z=x+yi ta có hệ đều kiện:

Ta có (1) là tập hợp các cạnh của hình vuông ABCD có tâm là gốc toạ độ độ dài cạnh bằng a = m 2 2 ; là đường tròn (C) có tâm là gốc toạ độ O bán kính bằng R = m.

Để có đúng 8 số phức thoả mãn thì (C) phải nằm giữa đường tròn ngoại tiếp và đường tròn nội tiếp hình vuông 

Chọn đáp án D.

5 tháng 7 2017

Đáp án A