Cho a<b chứng minh
a) 4a+1<4b+3
b) -5a-1>-5b-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^2+b^2-2ab-5b+11< 0\)
\(\Leftrightarrow4a^2+2b^2-4ab-10b+22< 0\)
\(\Leftrightarrow4a^2-4ab+b^2+b^2-10b+25< 3\)
\(\Leftrightarrow\left(2a-b\right)^2+\left(b-5\right)^2< 3\)
Ta có các trường hợp:
- \(\hept{\begin{cases}2a-b=0\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=5\end{cases}}\)(loại)
- \(\hept{\begin{cases}2a-b=1\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=5\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=0\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=6\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=1\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{7}{2}\\b=6\end{cases}}\)(loại)
Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).
Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)
\(\Rightarrow5a+4\ge\left(a+2\right)^2\)
\(\Rightarrow\sqrt{5a+4}\ge a+2\).
Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).
Cộng vế với vế ta có \(T\ge a+b+c+6=7\).
Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.
Vậy Min T = 7 khi a = 1; b = c = 0.
Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)
Do $0\leq a \leq 1$ nên $a\ge a^2.$
Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)
Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)
rồi đi chọn $m,n$ theo điểm rơi.
Không biết còn cách nào khác không nhỉ?
Vì a, b, c không âm và có tổng bằng 1 nên 0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g t ự : 5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7 ( đ p c m )
kết bạn với mk đi mk bảo
bạn có thể tham khảoCâu hỏi của nguyen mai chi - Toán lớp 6 - Học toán với OnlineMath
Đăng đúng môn hộ mình :)
Ta có: \(a< b\Leftrightarrow-5a>-5b\Leftrightarrow-5a+4>-5b+4\)
( Nhớ ghi mấy cái mà nhân -5 vào 2 vế rồi.................)
a: a>b
=>3a>3b
=>3a+5>3b+5
b: a>b
=>2a>2b
=>2a-3>2b-3>2b-4
a) \(a< b\Rightarrow4a< 4b\Rightarrow4a+1< 4b+1\)
mà \(4b+1< 4b+3\)
\(\Rightarrow4a+1< 4b+3\)
b) \(a< b\Rightarrow-5a>-5b\Rightarrow-5a-1>-5b-1\)
mà \(-5b-1>-5b-4\)
\(\Rightarrow-5a-1>-5b-4\)