K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) C = (-4.34, -5.84) C = (-4.34, -5.84) C = (-4.34, -5.84) D = (11.02, -5.84) D = (11.02, -5.84) D = (11.02, -5.84)
\(OB=OC=\dfrac{a}{2}\).
\(OA=\sqrt{BC^2-OC^2}=\sqrt{a^2-\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{3}}{2}\).
Vậy \(C\left(\dfrac{a}{2};0\right);B\left(-\dfrac{a}{2};0\right);A\left(0;\dfrac{a\sqrt{3}}{2}\right)\).
b) \(x_E=\dfrac{x_A+x_C}{2}=\dfrac{a}{4}\); \(y_E=\dfrac{y_A+y_C}{2}=\dfrac{a\sqrt{3}}{4}\).
Vậy \(E\left(\dfrac{a}{4};\dfrac{a\sqrt{3}}{4}\right)\).
c)Do tam giác ABC đều cạnh a nên tâm đường tròn ngoại tiếp chính là trọng tâm tam giác ABC.
\(x_I=\dfrac{x_A+x_B+x_C}{3}=0\);
\(y_I=\dfrac{x_A+y_B+y_C}{3}=\dfrac{a\sqrt{3}}{6}\).
Vậy \(I\left(0;\dfrac{a\sqrt{3}}{6}\right)\).

23 tháng 2 2021

gọi H(x;y) là chân đường cao hạ từ A 

\(\overrightarrow{AH}\left(x-4;y-3\right)\);\(\overrightarrow{BC}\left(-5;-15\right)\)

có AH vuông góc với bc \(\Rightarrow\overrightarrow{AH.}\overrightarrow{BC}=\overrightarrow{0}\)suy ra được 1 phương trình

có B,H,C thẳng hàng suy ra \(\overrightarrow{BH}=k.\overrightarrow{BC}=\left(-5k;-15k\right)\Rightarrow x-2=-5k;y-7=-15k\Rightarrow\left(x-2\right):\left(y-7\right)=1:3\)có 2 phương trình 2 ẩn giải tìm được x;y 

23 tháng 2 2021

Trong mặt phẳng tọa độ (Oxy, ) cho tam giác (ABC ) có (A( (4;3

29 tháng 11 2019

NV
22 tháng 2 2021

\(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-6\\y_C=3y_G-y_A-y_B=-2\end{matrix}\right.\) \(\Rightarrow C\left(-6;-2\right)\)

Gọi \(M\left(0;m\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BM}=\left(-1;m-3\right)\\\overrightarrow{CM}=\left(6;m+2\right)\end{matrix}\right.\)

\(\overrightarrow{BM}.\overrightarrow{CM}=0\Leftrightarrow-6+\left(m-3\right)\left(m+2\right)=0\)

\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=-3\\m=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}M\left(0;-3\right)\\M\left(0;4\right)\end{matrix}\right.\)

15 tháng 5 2016

A 2 y -2 -2 4 B C x

Vì G là trọng tâm tam giác ABC, nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Giả sử \(B\left(x_1;y_1\right);C\left(x_2;y_2\right)\)

Vì M là trung điểm của BC, nên ta có :

\(\begin{cases}x_1+x_2=2\\y_1+y_2=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x_2=2-x_1\\y_2=-2-y_1\end{cases}\)

Vậy \(C\left(2-x_1;-2-y_1\right)\)

Ta có \(\overrightarrow{BA}=\left(-x_1;2-y_1\right);\overrightarrow{CA}=\left(x_1-2;y_1+4\right)\)

Vì \(\widehat{BAC}=90^0\) nên \(\overrightarrow{BA}.\overrightarrow{CA}=0\)

\(\Leftrightarrow-x_1\left(x_1-2\right)+9y_1+4\left(2-y_1\right)=0\)

\(\Leftrightarrow-x^2_1-y^2_1+2x_1-2y_1+8=0\)  (1)

Do AB = AC nên \(AB^2=AC^2\)

\(x^2_1+\left(y_1-2\right)^2=2\left(2-x_1\right)^2+\left(4-y_1\right)^2\)

\(\Leftrightarrow-4y_1+4=-4x_1+4+16+8y_1\)

\(\Leftrightarrow x_1=3y_1+4\)    (2)

Thay (2) vào (1) ta có : 

\(y^2_1+y_1=0\Leftrightarrow\begin{cases}y_1=0\\y_1=-2\end{cases}\)

Từ đó ta có :

\(B\left(4;0\right);C\left(-2;-2\right)\) hoặc \(B\left(-2;-2\right);C\left(4;0\right)\)

Tóm lại ta có : 

\(A\left(0;2\right);B\left(4;0\right);C\left(2;-2\right)\) là 3 đỉnh của tam giác cần tìm

(Tam giác kia vẫn là tam giác trên chỉ đổi B và C với nhau)

15 tháng 5 2016

Vì G là trọng tâm của tam giác ABC nên ta có :

\(\overrightarrow{MA}=3\overrightarrow{MG}\Leftrightarrow\left(x_A-1;y_A+1\right)=3\left(\frac{2}{3}-1;0+1\right)\Leftrightarrow\begin{cases}x_A-1=-1\\y_A+1=3\end{cases}\)

                     \(\Leftrightarrow A\left(0;2\right)\)

Ta thấy MA có hệ số góc

\(k=\frac{2-\left(-1\right)}{0-1}=-3\)

Vì \(BC\perp MA\) nên đường thẳng nối BC có hệ số góc là \(\frac{1}{3}\), do đó phương trình của nó là :

\(y=\frac{1}{3}\left(x-1\right)-1\Leftrightarrow x-3y-4=0\)

Mặt khác do :

\(MB=MC=MA=\sqrt{1^2+3^2}=\sqrt{10}\)

Vậy tọa độ của B, C thỏa mãn phương trình đường tròn tâm M, bán kính =\(\sqrt{10}\)

\(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Vậy tọa độ của B, C là nghiệm của hệ phương trình :

\(\begin{cases}x-3y-4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình ta có các nghiệm (4;0) và (-2;2)

Vậy A(0;2);B(4;0);C(-2;-2) là 3 đỉnh của tam giác cần tìm

4 tháng 9 2019

Đáp án : D

 

29 tháng 11 2019

6 tháng 6 2018

Chọn A.

Gọi tọa độ điểm C( x ; y) 

Vì O là trọng tâm tam giác ABC  nên 

6 tháng 7 2019

a: \(\left\{{}\begin{matrix}x_G=\dfrac{2+4+2}{3}=\dfrac{8}{3}\\y_G=\dfrac{1+0+3}{3}=\dfrac{4}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_I=\dfrac{2+4}{2}=3\\y_I=\dfrac{1+0}{2}=\dfrac{1}{2}\end{matrix}\right.\)