với a,b,c \(\in\)N* và S=\(\dfrac{a+b}{c}\)+\(\dfrac{b+c}{a}\)+\(\dfrac{a+c}{b}\). Chứng minh rằng S\(\ge\)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có: \(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2b}{b}}=2\sqrt{a^2}=2a\)
Tương tự với các vế ta được: \(\left\{{}\begin{matrix}\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)
Cộng theo vế: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)
\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)
Ta có:
\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)
BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)
Đánh giá cuối cùng đúng theo BĐT Cauchy
Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
\(A=\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{c+a}+\dfrac{c+a}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)
\(A=\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)+\left(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\right)\)
\(A\ge\dfrac{3}{2}+\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\) (bất đẳng thức Nesbit)
\(A\ge\dfrac{3}{2}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}\)
\(A\ge\dfrac{3}{2}+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:
\(A\ge\dfrac{3}{2}+2\sqrt{\dfrac{ab}{ab}}+2\sqrt{\dfrac{ac}{ac}}+2\sqrt{\dfrac{bc}{bc}}\)
\(A\ge\dfrac{3}{2}+2+2+2=\dfrac{15}{2}\left(đpcm\right)\)
Dấu"=" xảy ra khi: \(a=b=c\)
Đề có bị sao không vậy? \(S\) không thể bằng \(2\) Sửa đề:
Chứng minh rằng \(S\ge6\)
Giải:
Ta có:
\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)
\(=\left(\dfrac{a}{c}+\dfrac{b}{c}\right)+\left(\dfrac{b}{a}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{c}{b}\right)\)
\(=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
\(\Rightarrow S\ge2+2+2=6\)
Vậy \(S\ge6\) (Đpcm)
đề k bị sao bn ơi