Một tấm bìa HCN có độ dài các cạnh là 18cm và 24cm. Cắt tấm tấm bìa thành những
hình vuông bằng nhau mà độ dài các cạnh là các số tự nhiên tính bằng cm. Hỏi có bao nhiêu
cách cắt? Hình vuông có cạnh dài nhất là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a là độ dài của cạnh hình vuông
Tính độ dài lớn nhất của cạnh hình vuông :
=> a là ƯCLN(60;96)
60 = 22.3.5
9 = 25.3
ƯCLN(60;96) = 22.3 = 12
Vậy độ dài lớn nhất của cạnh hình vuông là 12 cm
Để đc các tấm bìa hình vuông thì độ dài cạnh hình vuông phải thuộc tập ước chung của 75 và 105
Mà đề cho là lớn nhất nên cạnh đó bằng ƯCLN[75,105] = 15 cm
Gọi độ dài lớn nhất của cạnh hình vuông là a ( cm )
Theo đề bài
=> 75 chia hết cho a và 105 chia hết cho a , mà a lớn nhất
=> a = UWCLN ( 75 , 105 )
Ta có
=> 75 = 3 . 52
105 = 3 .5 .7
=> ƯCLN ( 75 , 105 ) = 3 . 5 = 15
=> a = 15
=> Độ dài lớn nhất của cạnh hình vuông là : 15 cm
ĐỂ CẮT HẾT TẤM BÌA THÀNH NHỮNG HÌNH VUÔNG BẰNG NHAU THÌ ĐỘ DÀI CẠNH HÌNH VUÔNG PHẢI LÀ 1 ƯỚC CỦA CHIỀU RỘNG VÀ CHIỀU DÀI CỦA TẤM BIÀ . DO ĐÓ MUỐN CHO CẠNH HÌNH VUÔNG LÀ LỚN NHẤT THÌ ĐỘ DÀI CỦA CẠNH PHẢI LÀ ƯCLN(75;105) .
- TA CÓ : 75 = 3 . 5 ^2 ; 105 =3.5.7 NÊN ƯCLN (75;105)=15
Đ/S:15CM
Muốn cắt tấm bìa 75x105 thành các hình vuông bằng nhau mà không thừa mảnh nào (và cạnh hình vuông là 1 số tự nhiên) thì độ dài cạnh hình vuông phải là ước chung của 75 và 105.
Vậy độ dài lớn nhất của cạnh hình vuông có thể cắt được chính là ước chung lớn nhất của 75 và 105
75=3.5^2
105=3.5.7
ƯCLN(75,105)=3.5=15
Độ dài lớn nhất của cạnh hình vuông có thể cắt được là 15 cm.
Nhớ k đúng cho mình nhé!
no nha bạn học thay thieuj mà hỏi bài