Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều cạnh 2a. Tính diện tích xung quanh và thể tích xung quanh và thể tích của hình nón đó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THeo đề bài, đường kính của hình tròn đáy của nón bằng 2a. Vậy bán kính R = a.
Chiều cao của hình nón bằng chiều cao của tam giác đều, nên h = a√3 và
đường sinh l = = 2a.
Vậy diện tích xung quanh của hình nón là:
Sxq = πRl = 2a2π ( đơn vị diện tích).
Thể tích khối nón là:
.
Câu hỏi nào của Võ Nguyễn Thái cũng có Võ Đoong Anh Tuấn làm,có khúc mắc
Đáp án A
Thiết diện qua trục của hình nón là tam giác vuông cân có cạnh huyền bằng a
Đáp án C
Phương pháp: Diện tích xung quanh của hình nón: S x q = π R l
Trong đó : R bán kính đáy, l độ dài đường sinh.
Cách giải: Tam giác ABC vuông cân tại A, AH ⊥ BC
=> AH = HB = HC
Diện tích xung quanh của hình nón:
S x q = π R l
gọi thiết diện là tam giác đềuSAB (S chính là đỉnh hình nón,do thiết diện đi qua trục
R=0,5.AB=\(\sqrt{2}\)a
S=πRl=π\(\sqrt{2}\)a.2 \(\sqrt{2}\)a=4\(a^2\)