Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với đáy một góc \(60^0\). Gọi M là trung điểm SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi H là tâm của hình vuông A B C D ; S B H ^ = 60 0 ; H B = a 2 2
Khi đó là trọng tâm tam giác SAC.
Qua G dựng đường thẳng song song với BD cắt SB;SD lần lượt là E và F.
Do tính chất đối xứng ta có:
V S . A E M F V S . A B C D = V S . A E M V S . A B C = S E S B . S M S C = 2 3 . 1 2 = 1 3 .
Mặt khác V A . A B C D = 1 3 S H . S A B C D = 1 3 H B tan 60 0 . a 2 = a 3 6 6 .
Do đó V S . A E M F = 1 3 . a 3 6 6 = a 3 6 18 .
Điều này chứng tỏ SM là đường cao của hình chóp S.AEMF. Vậy thể tích của khối chóp S.AEMF là:
Đáp án B
Hướng dẫn giải:
Gọi H là tâm của đáy khi đó S H ⊥ ( A B C D )
Lại có S H = H A tan 60 o = a 6 2
V S . A B C D = 1 3 S H . S A B C D = a 3 6 6
Mặt khác, gọi G = S H ∩ A M
⇒ G là trọng tâm của tam giác SAC.
Do đó S G S H = 2 3
Qua G dựng đường thẳng song song với BD cắt SB, SD lần lượt tại P và Q
Khi đó V S . A B M V S . A B C = S P S B . S M S C = 1 3
từ đó suy ra V S . A P M Q V S . A B C D = 1 3
Do vậy V S . A P M Q = a 3 6 18
⇒ 18 V a 3 = 6
Chọn A
Gọi O là gia điểm của hai đường chéo của hình bình hành ABCD. Gọi I là giao điểm của SO và AM. Khi đó
Đáp án B
Do các cạnh bên bằng nhau nên hình chiếu của S lên (ABCD) phải trùng với tâm H của hình vuông ABCD.
Dễ thấy I là trung điểm của SC, vì BD ⊥ SC, nên BD//(P). Do đó EF // BD. Để ý rằng EF đi qua trọng tâm J của tam giác SDB.
ình chóp S.ABCD là hình chóp đều nên chân H của đường cao SH chính là tâm của đáy. Mặt phẳng đi qua AM và song song với BD cắt mặt phẳng (SDB) theo một giao song song với BD, hay EF // BD.
Ta dựng giao tuyến EF như sau : Gọi I là giao điểm của AM và SH Qua I ta dựng một đường thẳng song song với BD, đường này cắt SB ở E và cắt SD ở F. Ta có góc SAH= 60°. Tam giác cân SAC có SA = SC và SAC = 60° nên nó là tam giác đều: I là giao điểm của các trung tuyến AM và SH nên: