cho đa thức f(x)=ax2+bx+c .chứng minh rằng nếu f(x)nhận 1 và -1 là nghiệm thì a và c đối nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x=1, x=-1 là ngiệm của đa thức f(x) nên
a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0
=>a+b+c=a-b+c=0 (1)
=>b=-b
=>b=0
thay b=0 vào (1) ta có a+c=0
=>a và c là 2 số đối nhau
Do f(x) nhận 1 là nghiệm nên\(f\left(1\right)=a+b+c=0\)
Do f(x) nhận -1 là nghiệm nên\(f\left(-1\right)=a-b+c=0\)
\(\Rightarrow\left(a+b+c\right)+\left(a-b+c\right)=0\)
\(\Rightarrow2\left(a+c\right)=0\)
\(\Rightarrow a=-c\)
Nên a và c là 2 số đối nhau
Nếu f(x) nhận 1 làm nghiệm
=>\(f\left(x\right)=a.1^2+b.1+c=a+b+c=0\Rightarrow a+c=-b\left(1\right)\)
Nếu f(x) nhận -1 làm nghiệm
=>\(f\left(x\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=0\Rightarrow a+c=b\left(2\right)\)
Lấy (1)+(2),vế theo vế
=>a+c=0
=>a và c là 2 số đối nhau (đpcm)
Ta có f(1)=a.12+b.1+c=a+b+c=0
f(-1)=a.(-1)2+b.(-1)+c=a-b+c=0
Ta có f(1)-f(-1)=(a+b+c)-(a-b+c)=a+b+c-a+b-c=2b=0
=>b=0
Thay b=0 vào f(1) ta có a+c=0
Vậy a và c là 2 số đối nhau
mình giúp bạn nha
Ta có : \(\int\left(x\right)=ãx^2+bx+c\)
1 là nghiêm của \(\int\left(x\right)\)\(\Rightarrow\int\left(1\right)=a+b+c=0\) (1)
-1 là nghiệm của \(\int\left(x\right)\Rightarrow\int\left(-1\right)=a-b+c=0\) (2)
Từ (1) và (2) \(\Rightarrow a+b+c=a-b+c\)
\(\Rightarrow a-a+b+b+c-c=0\)
\(\Rightarrow2b=0\)
\(\Rightarrow b=0\)
\(\Rightarrow a+0+c=0\)\(\Rightarrow a+c=0\)\(\Rightarrow a=-c\)
Vậy nếu \(\int\left(x\right)\) nhận 1 và -1 là nghiêm thì a và c đối nhau
thanks nhé bạn