Chứng mình rằng: Mọi số nguyên tố lớn hơn 5 đều có thể viết được dưới dạng tổng của ba số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6=2+2+2
7=2+2+3
8=2+3+3
b) 30= 13+17= 7+23
32=3+29 = 19+13
a) Chứng minh: gọi số tự nhiên đó là n (n>5)
+) Nếu n chẵn => n= 2+m trong đó m chẵn ;m>3
+) Nếu n lẻ => n= 3+m trong đó m lẻ; m> 2
Theo mệnh đề Euler => m được viết dưới dạng tổng quát của 2 số nguyên tố
=> n là tổng quát của các số nguên tố
6= 3+3
7= 2+5
8= 3+5 (dựa vào số lẻ và chẵn như tổng quát trên)
b) CM như câu trên:
30= 7+23
32=19+13
a) Euler phát biểu như sau: " Mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố . "
Nên ta có bài giải sau:
6 = 2 + 4
=> 6 = 2 + 2 + 2
7 = 3 + 4
=> 7 = 3 + 2 + 2
8 = 2 + 6
=> 8 = 2 + 2 + 4
Vậy 6 = 2 + 2 + 2
7 = 3 + 2 + 2
8 = 2 + 2 + 4
a) Euler phát biểu như sau: "mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố"
Nên ta có bài giải sau:
6=2+4 (với 4 là số chẳn >2 nên như phát biểu Euler thì sẽ 4 sẽ viết được dưới dạng tổng của 2 số nguyên tố)
=> 6=2+2+2
7=3+4 (lập luận như trên ta cũng có kết quả)
=> 7=3+2+2
8 Hoàn toàn tương tự 6
=> 8=2+6=2+2+4
a, Ta có :
6=2+2+2 7=2+3+2 8=2+3+3
b, Ta có:
30=13+17 32=13+19
a)6=2+2+2
7=2+2+3
8=2+3+3
b) moi so chan >2 deu duoc viet duoi dang 2k
=> 2k = x+y (voi x,y la 2 so nguyen to)
vi 2k chia het cho 2 =>de 2k=x+y thi 2k chia het cho 2
vi x,y 2 so nguyen to =>x,y=2 hoac 2a+1
xet x=2a+1, y= 2a+1
=>x+y = 2a+1+2a+1=4a+2 chia het cho 2 (TM)
xet x=2,y=2
=>x+y=4chia het cho 2(TM)
vi x+y chia het cho 2=> 2k=x+y voi x,y la 2 so nguyen to
=>moi so chan >2 deu co the viet duoi dang tong cua 2 so nguyen to
Câu này là một phần của bài toán Euler-Goldbach
Hiện chưa ai giải được