Tìm x biết
3^x+1=27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x-2\right)+4\left(x-5\right)=23\)
\(\Rightarrow3x-6+4x-20-23=0\)
\(\Rightarrow7x-49=0\)
\(\Rightarrow x=7\)
3(x-2)+4(x-5)=23
<=>3x-6+4x-20=23
<=>7x-26=23
<=>7x=49
<=>x=7
Vậy x=7
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
\(\dfrac{3}{7}+\dfrac{a}{b}+\dfrac{2}{3}=\dfrac{1}{2}\)
\(\dfrac{3}{7}+\dfrac{a}{b}=\dfrac{1}{2}-\dfrac{2}{3}\)
\(\dfrac{3}{7}+\dfrac{a}{b}=-\dfrac{1}{6}\)
\(\dfrac{a}{b}=-\dfrac{1}{6}-\dfrac{3}{7}\)
\(\dfrac{a}{b}=-\dfrac{25}{42}\)
_____________
\(\dfrac{a}{b}-\dfrac{4}{9}+\dfrac{1}{10}=\dfrac{1}{7}\)
\(\dfrac{a}{b}-\dfrac{4}{9}=\dfrac{1}{7}-\dfrac{1}{10}\)
\(\dfrac{a}{b}-\dfrac{4}{9}=\dfrac{3}{70}\)
\(\dfrac{a}{b}=\dfrac{3}{70}+\dfrac{4}{9}\)
\(\dfrac{a}{b}=\dfrac{307}{630}\)
a/\(x:27=3,6\)
\(\Rightarrow x=97,2\)
b/\(\dfrac{2x+1}{-27}=\dfrac{-3}{2x+1}\)
\(\Rightarrow\left(2x+1\right)^2=81\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{4;-5\right\}\)
\(3^{x+1}=27\)
\(\Rightarrow3^{x+1}=3^3\)
=> x+1=3
=> x=3-1
Vậy x=2.