K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \)\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\left(1\right)\)

\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\left(2\right)\). Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(A< B< 1\Rightarrow A< 1\)

21 tháng 3 2019

bạn ơi qua giúp mk với

21 tháng 3 2019

mk viết nhầm 

A = 1 / 2+ 1 / 32 + 1 / 4+ ... + 1 / 802 mới đúng nhé

22 tháng 4 2016

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2 > 1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2  > 1/3- 1/4+1/4-1/5+1/501/6+1/6-1/7+1/7-1/8+1/8-1/9

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2  > 3/9-1/9

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2  > 2/9

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2  < 1/2.3 +1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2 < 1/2 -1/3+1/3-1/4+1/4-1/5+1/6-1/7+1/7-1/8

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2 < 1/2-1/8

1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2  < 3/8 vậy ta có 2/9< 1/3^2+1/4^2+1/5^2+1/6^2 +1/7^2 1/8^2 <3/8

22 tháng 4 2016

thank u bạn Vũ Minh DŨng nhìu nha mình tịk cho pạn zồi ak nha

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)