Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(P=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)
\(=120\left(3^x+...+3^{x+96}\right)⋮120\)
1) (120a+36b)
=12(20a+3b)
vì 12\(⋮12\)
=>\(12\left(10a+3b\right)⋮12\) hoặc \(120a+36b⋮12\) (đpcm)
a) \(16x^2-\left(4x-5\right)^2=15\) \(\Leftrightarrow\) \(16x^2-\left(16x^2-40x+25\right)=15\)
\(\Leftrightarrow\) \(16x^2-16x^2+40x-25=15\) \(\Leftrightarrow\) \(40x-25=15\)
\(\Leftrightarrow\) \(40x=40\) \(\Leftrightarrow\) \(x=1\) vậy \(x=1\)
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow\) \(4x^2+12x+9-4\left(x^2-1\right)=49\)
\(\Leftrightarrow\) \(4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow\) \(12x+13=49\) \(\Leftrightarrow\) \(12x=36\) \(\Leftrightarrow\) \(x=\dfrac{36}{12}=3\)vậy \(x=3\)
c) \(\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow\) \(4x^2-1+1-4x+4x^2=18\)\(\Leftrightarrow\) \(8x^2-4x=18\)
\(\Leftrightarrow\) \(8x^2-4x-18=0\)
\(\Delta'=\left(-2\right)^2-8.\left(-18\right)=4+144=148>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{2+\sqrt{148}}{8}=\dfrac{1+\sqrt{37}}{4}\)
\(x_2=\dfrac{2-\sqrt{148}}{8}=\dfrac{1-\sqrt{37}}{4}\)
vậy \(x=\dfrac{1+\sqrt{37}}{4};x=\dfrac{1-\sqrt{37}}{4}\)
Giải:
a) \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-16x^2-40x+25=15\)
\(\Leftrightarrow-40x+25=15\)
\(\Leftrightarrow-40x=15-25=-10\)
\(\Leftrightarrow x=-\dfrac{10}{-40}=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4}\)
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1^2\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x+9+4=49\)
\(\Leftrightarrow12x=49-9-4\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=\dfrac{36}{12}=3\)
Vậy \(x=3\)
c) \(\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow4x^2-1+1-4x+4x^2=18\)
\(\Leftrightarrow8x^2-4x=18\)
Mình chỉ làm được đến đây thôi, hình như là đề bị sai bạn nhé!
Chúc bạn học tốt!
a, \(720:\left[41-\left(2x-5\right)\right]=2.2.2.5\)
\(720:\left[41-\left(2x-5\right)\right]=40\)
\(41-\left(2x-5\right)=18\)
\(\Leftrightarrow2x-5=23\)
\(\Leftrightarrow2x=28\)
\(\Leftrightarrow x=14\)
Vậy ....
b, \(\left(2x+1\right)^2=625\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+1\right)^2=25^2\\\left(2x+1\right)^2=\left(-25\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=25\\2x+1=-25\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-13\end{matrix}\right.\)
Vậy ...
a) Thay x= 1/2 và y=-1/3 vào biểu thức A, ta được:
A= 3.(1/2)2 .(-1/3)+ 6.(1/2).(-1/3)2+ 3.(1/2).(-1/3)3= -7/8
Vậy giá trị của biểu thức A tại x=1/2 và y=-1/3 là -7/8
ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1+2\sqrt{y-1}+1\right)+\left(z-2+2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-2\right)^2=0\)
Mà \(\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2\ge0\\\left(\sqrt{y-1}-1\right)^2\ge0\\\left(\sqrt{z-2}-2\right)^2\ge0\end{matrix}\right.\)\(\forall x;y;z\)
\(\Rightarrow\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-1}-1=0\\\sqrt{z-2}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x-1=1\\y-1=1\\z-2=4\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2\\y=2\\z=6\end{matrix}\right.\)
=> x02 + y02 + z02 = 22 + 22 + 62 = 44
a)(x2-5x+6)(x2-5x+2)-5
Đặt \(x^2-5x+2=t\) ta được:
\(\left(t+4\right)t-16\)\(=t^2+4t-5\)
\(=t^2+5t-t-5\)
\(=t\left(t+5\right)-\left(t+5\right)\)
\(=\left(t-1\right)\left(t+5\right)\)\(=\left(x^2-5x+2-1\right)\left(x^2-5x+2+5\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-5x+7\right)\)
b) (x2+8x-5)(x2+8x+1)-16
Đặt \(t=x^2+8x-5\) ta đc:
\(t\left(t+6\right)-16\)\(=t^2+6t-16\)
\(=t^2+8t-2t-16\)
\(=t\left(t+8\right)-2\left(t+8\right)\)
\(=\left(t-2\right)\left(t+8\right)\)\(=\left(x^2+8x-5-2\right)\left(x^2+8x-5+8\right)\)
\(=\left(x^2+8x-7\right)\left(x^2+8x+3\right)\)
Ta có : \(\begin{cases}x^2+y^2=5\\x^4-x^2y^2+y^4=13\end{cases}\) . Đặt \(a=x^2+y^2,b=x^2y^2\)
Suy ra : \(\begin{cases}a=5\\a^2-3b=13\end{cases}\) \(\Leftrightarrow\begin{cases}a=5\\b=4\end{cases}\)
Ta có hệ : \(\begin{cases}x^2+y^2=5\\x^2y^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x^2+y^2=5\\xy=2\end{cases}\) (I)hoặc \(\begin{cases}x^2+y^2=5\\xy=-2\end{cases}\) (II)
Lại đặt \(\begin{cases}m=x+y\\n=xy\end{cases}\) . Giải hệ (I) : \(\begin{cases}m^2-2n=5\\n=2\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm3\\n=2\end{cases}\)
Tới đây bạn tự giải bằng phương pháp thế.
Giải hệ (II) : \(\begin{cases}m^2-2n=5\\n=-2\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm1\\n=-2\end{cases}\)
Tới đây bạn tự giải bằng pp thế.
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \)\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\left(1\right)\)
Mà \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\left(2\right)\). Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(A< B< 1\Rightarrow A< 1\)