K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Ta có: 3a2 + b2 = 4ab

<=> 3a2 + b2 - 4ab = 0

<=> a2 + b2 - 2ab + 2a2 - 2ab = 0

<=> (a - b)(3a - b) = 0 <=> a = b/3 (a - b = 0 loại vì a = b)

=> B = \(\dfrac{a-b}{a+b}\)= \(\dfrac{\dfrac{1}{3}b-b}{\dfrac{1}{3}b+b}\)= \(-\dfrac{2}{3}b:\dfrac{4}{3}b\) = \(-\dfrac{1}{2}\).

27 tháng 11 2016

Ta có: \(3a^2+b^2=4ab\Rightarrow4a^2-4ab+b^2-a^2=0\Rightarrow\left(2a-b\right)^2-a^2=0\)

\(\Rightarrow\left(2a-b-a\right)\left(2a-b+a\right)=0\Rightarrow\left(a-b\right)\left(3a-b\right)=0\)

Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}a-b=0\\3a-b=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=b\\3a=b\end{array}\right.\)

theo đề ra thì b>a>0 => không xảy ra trường hợp a=b.

\(\Rightarrow\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=-\frac{1}{2}\)

P/s: Không biết cách trình bày có đc không a~

 

28 tháng 9 2017

ta có: (a+b)/3 = (b+c)/4 =>4a+4b=3b+3c=>4a+b-3c=0 (1)

ta có : (b+c)/3=(c+a)/5=> 5b+5c=4c+4a => 4a-5b-c=0=> 4a= 5b+c (2)

ta có: (c+a)/5=(a+b)/3 => 5a+5b= 3c+3a => 2a+5b-3c=0 => 3c=2a+5b (3)

THay (2) vào (1) ta dc:c = 3b

tay (3) vao (1) ta đc: a = 2b

M= 8a-b-5c+2016=8.2b-b-5.3b+2016=2016. HẾT

20 tháng 12 2017

lam sao ma ra dc a=2b zay

5 tháng 1 2018

a2 + 3b2 = 4ab

=> a2 + b2 + 2b2 - 2ab - 2ab = 0

=> (a2 - 2ab + b2) - 2b(a - b) = 0

=> (a - b)2 - 2b(a - b) = 0

=> (a - b)(a - b - 2b) = 0

=> (a - b)(a - 3b) = 0

*Xảy ra 2 trường hợp: a - b = 0 => a = b (vô lí vì a > b > 0)

                          và    a - 3b = 0 => a = 3b

Vậy A = ...................Bạn thay a = 3b vào A là xong

5 tháng 1 2018

Đúng rồi !!

6 tháng 4 2017

Tìm giá trị của phân thức khi biến thỏa mãn điều kiện cho trước | Toán lớp 8

28 tháng 11 2016

Ta có: \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=\frac{a+b+b+c+c+a}{3+4+5}=\frac{2.\left(a+b+c\right)}{12}\)

                                                                                                            \(=\frac{a+b+c}{6}\)

\(\Rightarrow\) Thay M vào tính

4 tháng 12 2016

Thay M vao tinh sao vay

27 tháng 12 2016

a-4ab=b dat a ra ngoai

27 tháng 12 2016

\(a-4ab=b\Rightarrow a-b=4ab\Rightarrow P=\frac{-ab}{a-b}=\frac{-ab}{4ab}=\frac{-1}{4}\)

20 tháng 8 2016

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)

Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)

\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)

Cộng theo vế của (1);(2)&(3) ta đc:

A\(\le1\)

Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c

 

21 tháng 8 2016

Thanks nha, cách giải hay quớ