K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

a-4ab=b dat a ra ngoai

27 tháng 12 2016

\(a-4ab=b\Rightarrow a-b=4ab\Rightarrow P=\frac{-ab}{a-b}=\frac{-ab}{4ab}=\frac{-1}{4}\)

20 tháng 2 2018

khó quá xem trên mạng

25 tháng 12 2021

\(A=16-2\cdot\left(-12\right)=40\)

25 tháng 12 2021

\(a^2+b^2=\left(a^2+2ab+b^2\right)-2ab=\left(a+b\right)^2-2ab=\left(-4\right)^2-2\left(-12\right)=16+24=40\)

25 tháng 12 2016

(a-b)^2=100

=a^2-2ab+b^2=100

=a^-10+b^2=100

=a^2+b^2=110 

(a+b)^2

=a^2+2ab+b^2

=110+10

=120

25 tháng 12 2016

 Cảm ơn bạn nhiều

27 tháng 11 2016

Ta có: \(3a^2+b^2=4ab\Rightarrow4a^2-4ab+b^2-a^2=0\Rightarrow\left(2a-b\right)^2-a^2=0\)

\(\Rightarrow\left(2a-b-a\right)\left(2a-b+a\right)=0\Rightarrow\left(a-b\right)\left(3a-b\right)=0\)

Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}a-b=0\\3a-b=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=b\\3a=b\end{array}\right.\)

theo đề ra thì b>a>0 => không xảy ra trường hợp a=b.

\(\Rightarrow\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=-\frac{1}{2}\)

P/s: Không biết cách trình bày có đc không a~

 

NV
29 tháng 4 2021

Từ giả thiết:

\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)

\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)

\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)

Đặt \(\dfrac{a}{b+c}=x\ge1\)

\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)

\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)

\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)

15 tháng 4 2023

Tại sao dòng 6 lại \(+-\) 2/9 vậy ạ?

 

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?