K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

a tgABC can tai c,b oc=12,5

22 tháng 10 2021

Trên BC lấy I sao cho IC=IB

Ta có AM=MC=AC/2=20/2= 10 cm

Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm

Áp dụng Pytago trong tam giác vuông AMH: AH2= AM- MH2 = 10- 82= 36 ----> AH=6 cm

có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)

Từ I kẻ IK vuông góc AB

có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB) 

---> MIKH là hình bình hành

---> MI=HK=12 cm; MH=IK=8 cm

BK= AB-AH-HK = 24-6-12=6 cm

Xét tam giác AMH và tam giác BIK:

     AH=BK=6 

     góc AHM= góc BKI= 90O

      MH=IK=8

----> tam giác AMH=tam giác BIK(c.g.c)

----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA

----> tam giác ABC cân tại C

b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)

----> AM=MC=IB=IC=10 cm

Kéo dài CO cắt AB tại D

tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O

có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o

Tương tự với tam giác OCB được  OI vuông góc BC hay góc OIC=90o

Xét tam giác vuông OMC và tam giác vuông OIC:

     MC=IC=10cm

    OC cạnh chung

--->tam giác OMC = tam giác OIC (ch.cgv)

--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->

CD vuông góc AB hay góc ADC=90oAD=BD=AB/2 = 12 cm

Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256  ---> CD=16 cm

Đặt OC=OA=X --> OD= CD-OC = 16 - X

Theo Pytago tam giác AOD: AO2= OD2+AD2

                                                     <-->X2= (16-X)2 + 122

                                                     <--> 162 -32X + X2 +122 - X2=0

                                       <--> 400 - 32X=0

                                       <--> X= -400/-32= 12,5 cm

 Vậy bán kính đường tròn bằng 12,5 cm

NV
13 tháng 8 2021

\(AM=\dfrac{1}{2}AC=10\left(cm\right)\)

Kẻ \(MD\perp AB\Rightarrow MD=8\left(cm\right)\)

Kẻ \(CH\perp AB\Rightarrow MD||CH\Rightarrow\) MD là đường trung bình tam giác ACH

\(\Rightarrow MD=\dfrac{1}{2}CH\Rightarrow CH=2MD=16\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ACH:

\(AH=\sqrt{AC^2-CH^2}=12\left(cm\right)\)

\(\Rightarrow AH=\dfrac{1}{2}AB\Rightarrow H\) đồng thời là trung điểm AB

\(\Rightarrow\Delta ABC\) cân tại C

b.

Do tam giác ABC cân tại C \(\Rightarrow O\in CH\)

Kéo dài CH cắt đường tròn tại E (E khác C) \(\Rightarrow CE\) là đường kính

\(\Rightarrow\widehat{CAE}\) là góc nội tiếp chắn nửa đường tròn hay tam giác CAE vuông tại A

Áp dụng hệ thức lượng:

\(AC^2=CH.CE\Rightarrow CE=\dfrac{AC^2}{CH}=25\left(cm\right)\)

\(\Rightarrow R=\dfrac{1}{2}CE=12,5\left(cm\right)\)

NV
13 tháng 8 2021

undefined

14 tháng 7 2015

Trên BC lấy I sao cho IC=IB

Ta có AM=MC=AC/2=20/2= 10 cm

Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm

Áp dụng Pytago trong tam giác vuông AMH: AH2= AM- MH2 = 10- 82= 36 ----> AH=6 cm

có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)

Từ I kẻ IK vuông góc AB

có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB) 

---> MIKH là hình bình hành

---> MI=HK=12 cm; MH=IK=8 cm

BK= AB-AH-HK = 24-6-12=6 cm

Xét tam giác AMH và tam giác BIK:

     AH=BK=6 

     góc AHM= góc BKI= 90O

      MH=IK=8

----> tam giác AMH=tam giác BIK(c.g.c)

----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA

----> tam giác ABC cân tại C

b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)

----> AM=MC=IB=IC=10 cm

Kéo dài CO cắt AB tại D

tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O

có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o

Tương tự với tam giác OCB được  OI vuông góc BC hay góc OIC=90o

Xét tam giác vuông OMC và tam giác vuông OIC:

     MC=IC=10cm

    OC cạnh chung

--->tam giác OMC = tam giác OIC (ch.cgv)

--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->

  • CD vuông góc AB hay góc ADC=90o
  • AD=BD=AB/2 = 12 cm

Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256  ---> CD=16 cm

Đặt OC=OA=X --> OD= CD-OC = 16 - X

Theo Pytago tam giác AOD: AO2= OD2+AD2

                                                     <-->X2= (16-X)2 + 122

                                                     <--> 162 -32X + X2 +122 - X2=0

                                       <--> 400 - 32X=0

                                       <--> X= -400/-32= 12,5 cm

 Vậy bán kính đường tròn bằng 12,5 cm

     

 

     

    

4 tháng 9 2017

tại sao bạn không kẻ đường cao CD. Như thế sẽ đỡ mất thời gian chứng minh

a) Xét ΔOAB có OA=OB(=R)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOAB cân tại O(cmt)

mà OC là đường cao ứng với cạnh đáy AB(OH⊥AB, C∈OH)

nên OC là đường phân giác ứng với cạnh AB(Định lí tam giác cân)

\(\widehat{AOC}=\widehat{BOC}\)

Xét ΔAOC và ΔBOC có

OA=OB(=R)

\(\widehat{AOC}=\widehat{BOC}\)(cmt)

OC chung

Do đó: ΔAOC=ΔBOC(c-g-c)

\(\widehat{OAC}=\widehat{OBC}\)(hai góc tương ứng)

mà \(\widehat{OAC}=90^0\)(CA là tiếp tuyến của (O) có A là tiếp điểm)

nên \(\widehat{OBC}=90^0\)

hay CB⊥OB tại B

Xét (O) có 

OB là bán kính

CB⊥OB tại B(cmt)

Do đó: CB là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

b) Xét (O) có 

OH là một phần đường kính

AB là dây

OH⊥AB tại H(gt)

Do đó: H là trung điểm của AB(Định lí đường kính vuông góc với dây)

\(BH=\dfrac{AB}{2}=\dfrac{24}{2}=12cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBC vuông tại B có BH là đường cao ứng với cạnh huyền OC, ta được:

\(\dfrac{1}{BH^2}=\dfrac{1}{BC^2}+\dfrac{1}{BO^2}\)

\(\Leftrightarrow\dfrac{1}{12^2}=\dfrac{1}{BC^2}+\dfrac{1}{20^2}\)

\(\Leftrightarrow\dfrac{1}{BC^2}=\dfrac{1}{12^2}-\dfrac{1}{20^2}=\dfrac{1}{144}-\dfrac{1}{400}=\dfrac{1}{225}\)

\(\Leftrightarrow BC^2=225\)

hay BC=15(cm)

Áp dụng định lí Pytago vào ΔOBC vuông tại B, ta được:

\(OC^2=OB^2+BC^2\)

\(\Leftrightarrow OC^2=15^2+20^2=625\)

hay OC=25(cm)

Vậy: OC=25cm

Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}\)

=>\(sđ\stackrel\frown{CB}=2\cdot60^0=120^0\)