Tìm các số a, b, c nguyên dương thỏa mãn :
\(a^3+3a^2+5=5b\) và \(a+3=5^c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+3a^2+5=5^b\)
\(\Rightarrow a^2\left(a+3\right)+5=5^b\)
\(\Rightarrow a^2.5^c+5=5^b\)(vì a+3=5c)
\(\Rightarrow a^2.5^{c-1}+1=5^{b-1}\) (chia cả 2 vế cho 5)
=> c - 1 = 0 hoặc b - 1 = 0
+) b = 1, khi đó ko thoả mãn
+) c = 1 => a = 2 => b = 2
a3 + 3a2 + 5 = 5b
=> a2(a + 3) + 5 = 5b
=> a2.5c + 5 = 5b (vì a + 3 = 5c)
=> a2.5c - 1 + 1 = 5b - 1 (chia cả 2 vế cho 5) (1)
=> c - 1 = 0 hoặc b - 1 = 0
+) b = 1, khi đó ko thoả mãn
+) c = 1 => a = 2 => b = 2
Ta có:
\(a^3+3a^2+5=5^b\)
\(\Leftrightarrow a^2\left(a+3\right)+5=5^b\)
\(\Leftrightarrow a^2.5^c+5=5b\)
\(\Leftrightarrow a^2.5^{c-1}+1=5^{b-1}\)
b-1=0 hoặc c-1=0
nếu b-1=0 thì thay vào không thỏa mãn
Nếu c-1=0 thì c=1 a=2 và b=2
a3+3a2+5=5b
=>a2(a+3)+5=5b
=>a2.5c+5=5b
=>5c<5b
=>5b chia hết cho 5c
=>5b chia hết cho a+3
=>a2(a+3)+5 chia hết cho a+3
=>5 chia hết cho a+3
..v..v..
=>a=2;c=1;b=2
Giải:
Vì \(a\in Z^+\)
\(\Rightarrow5^b=a^3+3a^2+5>a+3=5^c\)
\(\Rightarrow5^b>5^c\Rightarrow b>c\)
\(\Rightarrow5^b⋮5^c\)
\(\Rightarrow a^3+3a^2+5⋮a+3\)
\(\Rightarrow a^2\left(a+3\right)+5⋮a+3\)
Mà \(a^2\left(a+3\right)⋮a+3\)
\(\Rightarrow5⋮a+3\)
\(\Rightarrow a+3\inƯ\left(5\right)\)
\(\Rightarrow a+3\in\left\{\pm1;\pm5\right\}\left(1\right)\)
Do \(a\in Z^+\Rightarrow a+3\ge4\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow a+3=5\)
\(\Rightarrow a=5-3\)
\(\Rightarrow a=2\)\((*)\)
Thay \((*)\) vào biểu thức ta có:
\(2^3+3.2^2+5=5^b\Leftrightarrow b=2\)
\(2+3=5^c\Leftrightarrow c=1\)
Vậy: \(\left\{\begin{matrix}a=2\\b=2\\c=1\end{matrix}\right.\)