Cho biểu thức A = (2m\(^2\)-5n+3)(2m-3n-2)(3n\(^2\) -1)(m-n\(^2\) +4)
CMR: A \(⋮\) 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}
a) Để y là hàm số bậc nhất
\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)
b;c Tương tự.
B1:
[(m+n)+(2m-3n)]^2
= (m+n)^2 + 2(m+n)(2m-3n) + (2m-3n)^2
= m^2 +2mn +n^2 + 4m^2 - 6mn + 4mn - 6n^2 + 4m^2 - 12mn + 9n^2
= 9m^2 - 12mn + 4n^2
B2,3
bn lm theo hdt ( a +b + c) ^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc nha
a.m+2>n+2
Ta có: m >n
=>m+2 > n+2 (cộng hai vế với 2)
do đó m+2>n+2
b, -2m < -2n
Ta có: m > n
=> -2m < -2n (nhân hai vế với -2)
do đó -2m<-2n
c,2m-5>2n-5
Ta có: m>n
=>2m>2n (nhân hai vế với 2)
=>2m-5>2n-5 ( cộng hai vế với -5)
do đó 2m-5>2n-5
d,4-3m<4-3n
Ta có :m>n
=> -3m<-3n (nhân hai vế với -3)
=> 4-3m<4-3n (cộng 2 vế với 4)
a) Gọi d là ƯCLN(n + 1; n + 2)
\(\Rightarrow n+1⋮d\)
\(n+2⋮d\)
\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)
\(\Rightarrow\left(n+2-n-1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản
b) Gọi d là ƯCLN(n + 1; 3n + 4)
\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)
Do \(n+1⋮d\Rightarrow3n+3⋮d\)
\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản
c) Gọi d là ƯCLN(3n + 2; 5n + 3)
\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)
Do \(3n+2⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(\Rightarrow15n+10⋮d\) (1)
Do \(5n+3⋮d\)
\(\Rightarrow3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+9⋮d\) (2)
Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)
\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản
d) Gọi d là ƯCLN(12n + 1; 30n + 2)
\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)
Do \(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\) (3)
Do \(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮2\) (4)
Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)
\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
a: Gọi d=ƯCLN(n+1;n+2)
=>n+2-n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
b: Gọi d=ƯCLN(3n+4;n+1)
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
d: Gọi d=ƯCLN(12n+1;30n+2)
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG