cho 2 góc xOy và x'O'y' có Ox// O'x'; Oy//O'ý' Gọi Om là tia PG của xOy và On là tia Pg x'O'y'. hỏi nếu 2 góc xOy và x'O'y' có 1 góc nhọn và tù thì Om vuông góc On
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài tia Ox' cắt tia Oy tại N.
Ta có :
Góc xOy = Góc N1 ( 2 góc so le trong do Ox // Ox' )
Góc x'O'y' = Góc N1 ( 2 góc so le trong do Oy // Oy' )
\(\Rightarrow\)Góc xOy = Góc x'O'y'.
Do đó....
Ta có hình vẽ:
Kẻ Om là tia đối của Oy cắt O'x' tại E
Ta có: x'Ey = xOy (đồng vị) (1)
x'Ey = x'O'y' (đồng vị) (2)
Từ (1) và (2) => xOy = x'O'y' (đpcm)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)