Dzaaa giúp emm vứi
bài 1: Chứng Minh rằng :
AB song song với DM song song với CD
biết góc A = C =120 độ
*đường thẳng OM nằm giữa đường thẳng AB và CD
điểm O nối với điểm A , điểm O nối với điểm C *
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a .
Xét ΔABO;ΔBAMΔABO;ΔBAM có :
ˆOAB=ˆMBA(slt)AB(chung)ˆOBA=ˆMAB(slt)⇒ΔAOB=ΔBMA(g−c−g)⇒AM=BO;OA=BM
1: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
2: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
BC\(\perp\)CD
BC\(\perp\)OA
Do đó: CD//OA
3: Gọi giao điểm của OE và AD là H
OE\(\perp\)AD
nên OE\(\perp\)AD tại H
Gọi giao điểm của BC và OA là K
OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại K và K là trung điểm của BC
Xét ΔOBA vuông tại B có BK là đường cao
nên \(OK\cdot OA=OB^2\)
Xét ΔOHA vuông tại H và ΔOKE vuông tại K có
\(\widehat{HOA}\) chung
Do đó: ΔOHA đồng dạng với ΔOKE
=>\(\dfrac{OH}{OK}=\dfrac{OA}{OE}\)
=>\(OH\cdot OE=OA\cdot OK=OB^2\)
=>\(OH\cdot OE=OD^2\)
=>\(\dfrac{OH}{OD}=\dfrac{OD}{OE}\)
Xét ΔOHD và ΔODE có
\(\dfrac{OH}{OD}=\dfrac{OD}{OE}\)
\(\widehat{HOD}\) chung
Do đó: ΔOHD đồng dạng với ΔODE
=>\(\widehat{OHD}=\widehat{ODE}=90^0\)
=>ED là tiếp tuyến của (O)
Để giải câu c, ta sẽ sử dụng các kiến thức về góc nội tiếp và góc ngoại tiếp của đường tròn.
Vì AB và AC là hai tiếp tuyến của đường tròn (O), nên ta có:
∠OAB = ∠OCA (góc nội tiếp chắn cung AC)
∠OBA = ∠OAC (góc nội tiếp chắn cung AB)
Ta cũng biết rằng OA vuông góc với AB
Do đó, ta có:
∠OAB = ∠OBA (cùng là góc ngoại tiếp chắn cung AB)
∠OCA = ∠OAC (cùng là góc ngoại tiếp chắn cung AC)
Từ đó, ta suy ra:
∠OAB = ∠OBA = ∠OCA = ∠OAC
Vậy tứ giác OBCA là tứ giác nội tiếp.
Theo định lý góc nội tiếp, ta có:
∠OBC = ∠OAC (góc chắn cung AC)
∠OCB = ∠OAB (góc chắn cung AB)
Vì ∠OAB = ∠OBA và ∠OBC = ∠OCB, nên ta có:
∠OBC = ∠OCB
Do đó, tam giác OBC là tam giác cân tại O.
Vì tam giác OBC là tam giác cân, nên đường trung tuyến BD của tam giác OBC là đường cao và đường phân giác của tam giác OBC.
Vậy, ta có:
BD ⊥ OC (đường cao của tam giác OBC)
BD là đường phân giác của ∠OBC (đường phân giác của tam giác OBC)
Do đó, ta có:
∠BDC = ∠OBC/2 (do BD là đường phân giác của ∠OBC)
Vì ∠OBC = ∠OCB, nên ta có:
∠BDC = ∠OCB/2
Vì ∠OCB = ∠OCA (cùng là góc ngoại tiếp chắn cung AC), nên ta có:
∠BDC = ∠OCA/2
Vậy, ta suy ra:
∠BDC = ∠OCA/2
Như vậy, ta có:
∠BDC = ∠OCA/2 = ∠OAC/2 (do ∠OCA = ∠OAC)
Do đó, CD song song với OA.
Tiếp theo, ta chứng minh rằng ED là tiếp tuyến của đường tròn (O).
Vì ∠OAB = ∠OBA và ∠OCA = ∠OAC, nên ta có:
∠OAB = ∠OBA = ∠OCA = ∠OAC
Vậy tứ giác OBCA là tứ giác nội tiếp.
Theo định lý góc nội tiếp, ta có:
∠OBC = ∠OAC (góc chắn cung AC)
∠OCB = ∠OAB (góc chắn cung AB)
Vì ∠OAB = ∠OBA và ∠OBC = ∠OCB, nên ta có:
∠OBC = ∠OCB
Do đó, tam giác OBC là tam giác cân tại O.
Vì tam giác OBC là tam giác cân, nên đường trung tuyến BD của tam giác OBC là đường cao và đường phân giác của tam giác OBC.
Vậy, ta có:
BD ⊥ OC (đường cao của tam giác OBC)
BD là đường phân giác của ∠OBC (đường phân giác của tam giác OBC)
Do đó, ta có:
∠BDC = ∠OBC/2 (do BD là đường phân giác của ∠OBC)
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)