cho biểu thức X = 5+5^2+...+5^96.Chứng minh X chia hết cho 126
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126
Xin lỗi nha bạn , mình viết dấu mũ không được
S=5+5^2+5^3+....+5^96=
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)=
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{93}+5^{96}\right)\)
\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{93}.\left(1+5^3\right)\)
\(S=5.125+5^2.125+...+5^{93}.125\)
\(S=125.\left(5+5^2+...+5^{93}\right)⋮125\)
\(S=5+5^2+5^3+...+5^{96}\)(có 96 số, 96 chia hết cho 6)
\(=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{91}+5^{94}\right)+\left(5^{92}+5^{95}\right)+\left(5^{93}+5^{96}\right)\)
\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{92}.\left(1+5^3\right)+5^{93}.\left(1+5^3\right)\)
\(=5.126+5^2.126+5^3.126+...5^{91}.126+5^{92}.126+5^{93}.126\)
\(=126.\left(5+5^2+5^3+...+5^{91}+5^{92}+5^{93}\right)\)chia hết cho 126.
Vậy \(S=5+5^2+5^3+...+5^{96}\)chia hết cho 126.
a) S = 5 + 5 2 + .... + 5 96
5S = 5 2 + 5 3 + ... + 5 97
=> 5S - S = ( 5 2 + 5 3 + ... + 5 97 ) - ( 5 + 5 2 + .... + 5 96 )
=> 4S = 5 97 - 5
=> S = \(\frac{5^{97}-5}{4}\)
b) Ta có ;
S = 5 + 5 2 + .... + 5 96
= ( 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 ) + ..... + ( 5 90 + 5 91 + 5 92 + 5 93 + 5 94 + 5 95 + 5 96 )
= 5 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 ) + ..... + 5 90 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 )
= 5 . 3906 + ... + 5 90 . 3906
= ( 5 + ... + 5 90 ) . 3906
= ( 5 + ... + 5 90 ) . 126 . 31 chia hết cho 126 ( Vì 126 chia hết cho 126 )
Vậy S = 5 + 5 2 + .... + 5 96 chia hết cho 126
a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
Vì mỗi cặp của đa thức \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )
\(\Rightarrow\)Đa thức \(S\)không dư số nào
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
\(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)
\(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)
Vậy \(S⋮126\)
có:2B+3=3+2B=3+2*3+2*3²+2*3^3+2*3^4+.......
=3²+2*3²+2*3^3+2*3^4+....+2*3^100=3^3+...
=......=3^101
3^x=3^101 <=> x=101
bai 2
bạn nhóm số liên tiếp lại thi tổng của chúng sẽ chia hết chọ
5+5²+5^3+5^4+5^5+5^6=155*126 chia hết cho 126
ta có 96/6=16 nhóm
vậy S chia hết cho 126.
các số hạng đều có tận cùng là 5
S có 96 số hạng
vậy chữ số tận cùng của S là 0