K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Lời giải:

Định lý: điều kiện đủ để phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\)\(f(x)\) liên tục trên \([a,b]\)\(f(a)f(b)<0\).

Bây giờ xét \(\left\{\begin{matrix} f(x)=x^3+2x^2+3x+4\\ g(x)=x^3-8x^2+23x-26\end{matrix}\right.\)

Ta thấy hai hàm trên liên tục trên \(R\). Hơn nữa:\(\left\{\begin{matrix} f(-2)f(0)<0\\ g(3)g(4)<0\end{matrix}\right.\)

Do đó \(f(x) =0\) có ít nhất một nghiệm \(x_1\in (-2,0)\)\(g(x)=0\) có ít nhất một nghiệm \(x_2\in (3,4)\)

Lại có \(f'(x)=3x^2+4x+3>0\forall x\in\mathbb{R}\)\(g'(x)=3x^2-16x+23>0\forall x\in\mathbb{R}\) nên hai hàm luôn đồng biến .

Do đó, cả hai PT đều có duy nhất một nghiệm.

Vì nó chỉ có duy nhất một nghiệm nên có thể tính trực tiếp (hoặc sử dụng phương pháp Cardano ta suy ra tổng hai nghiệm của chúng là \(x_1+x_2=2\)

21 tháng 2 2017

lớp mấy vậy bạn

NV
19 tháng 3 2021

1.

Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)

\(f\left(x\right)\) xác định và liên tục trên R

\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)

\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)

\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)

\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)

\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)

\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)

Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt

NV
19 tháng 3 2021

2.

Đặt \(t=g\left(x\right)=x.cosx\)

\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)

\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)

Hàm \(f\left(t\right)\) xác định và liên tục trên R

\(f\left(1\right)=1>0\)

\(f\left(-2\right)=-8< 0\)

\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m

11 tháng 4 2017

a. Đúng

Vì x 2  + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2

b. Đúng

Vì  x 2  – x + 1 = x - 1 / 2 2  + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0

⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1

c. Sai

Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1

Do vậy phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 không thể có nghiệm x = - 1

d. Sai

Vì điều kiện xác định của phương trình là x ≠ 0

Do vậy x = 0 không phải là nghiệm của phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

1 tháng 6 2017

a) Đ

b) S

c) S

d) Đ

17 tháng 1 2018

Đáp án đúng : C

8 tháng 10 2019

11 tháng 6 2018

Câu 3:  Phương trình : 2013x2 – 2015x + 2 = 0 có 2 nghiệm là:A.  x1 = -1 và x2 = -2/2013     B. x1 = 1 và  x2 = 2/2013C. Phương trình vô nghiệm     D. Cả ba đáp án trên đều sai.Câu 4: Cho phương trình x2 + 3x + 1 = 0, khi đó tổng các nghiệm bằng         A. 3                                  B. - 3                  C. 1                                   D. -1       Câu 5:  Phương trình nào sau đây vô nghiệm:           A.  4x2 -  5x + 1 = 0     B.  2x2 + x – 1 = 0    ...
Đọc tiếp

Câu 3:  Phương trình : 2013x2 – 2015x + 2 = 0 có 2 nghiệm là:

A.  x1 = -1 và x2 = -2/2013     B. x1 = 1 và  x2 = 2/2013

C. Phương trình vô nghiệm     D. Cả ba đáp án trên đều sai.

Câu 4: Cho phương trình x2 + 3x + 1 = 0, khi đó tổng các nghiệm bằng

         A. 3                                  B. - 3                  C. 1                                   D. -1       

Câu 5:  Phương trình nào sau đây vô nghiệm:          

 A.  4x2 -  5x + 1 = 0     B.  2x2 + x – 1 = 0     C.  3x2 + x + 2 = 0    D. x2 + x – 1 = 0

Câu 6:  Phương trình x2 - 7x + 6 = 0,khi đó tích các nghiệm bằng

               A.  -7              B.  6                         C. - 6                                D. 7

5
AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Câu 3:

$\Delta=2015^2-4.2013.2=2011^2$

Do đó pt có 2 nghiệm:

$x_1=\frac{2015+2011}{2.2013}=1$

$x_2=\frac{2015-2011}{2.2013}=\frac{2}{2013}$

Đáp án B.

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Câu 4:

Theo định lý Viet, tổng các nghiệm của pt là:

$S=\frac{-b}{a}=\frac{-3}{1}=-3$

Đáp án B.

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

9 tháng 11 2017

a) Thay x = 3 2  vào (1) và (2) thấy thỏa mãn nên  x = 3 2 là nghiệm chung của cả hai PT đã cho.

b) Thay x = -5 vào (2) thấy thỏa mãn nên x = -5 là nghiệm của (2). Thay x = -5 vào (1) thấy không thỏa mãn nên x = -5 không là nghiệm của (1).

c) Cách 1. Tìm được tập nghiệm của (1) và (2) lần lượt là S 1 = { 1 ; 3 2 }  và  S 2 = { - 5 ; 3 2 }

Vì S 1 ≠ S 2  Þ Hai phương trình không tương đương nhau.

Cách 2. Theo ý b, x = -5 là nghiệm của (2) nhưng không là nghiệm của (1) nên hai PT không có cùng tập nghiệm.