Biết \(\frac{a}{5}\) +\(\frac{1}{10}\)= \(\frac{-1}{b}\), tổng a +b lớn nhất là ? Tìm a , b (Nếu có thể)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để có kết quả là -1/b thì a phải là -2/10 rút gọn còn -1/5. Vậya=-1
Ta có: mẫu số chung là 10. Vậy b=10
=>-1+10=9
\(\frac{a}{5}+\frac{1}{10}=-\frac{1}{b}\\ \Rightarrow\frac{2a+1}{10}=-\frac{1}{b}\\ \Rightarrow\left(2a+1\right)b=-10\)
Lập bảng ra thì biết đáp án !!!
Tìm cách giải: A là phân số dương có tử số là 2020 không đổi. Vì vậy, muốn A đạt GTLN thì (a+b) phảo đạt GTNN. Để tìm (a+b)min ta phải tìm các giá trị có thể có của a và b rồi tìm các GTNN của a và b. Ta thấy ngay tù \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Chú ý tính chất nghịch đảo của 1 số tự nhiên m,n khác 0: m>n thì \(\frac{1}{m}< \frac{1}{n}\)
Giải
Do \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Không mất tính tổng quát giả sử: 1<a\(\le b\)
\(\Rightarrow1>\frac{1}{a}\ge\frac{1}{b}\). Ta có \(\frac{1}{a}+\frac{1}{b}\le\frac{1}{a}+\frac{1}{a}\)hay \(\frac{7}{10}\le\frac{2}{a}\Rightarrow2\le2\frac{6}{7}\)
Do a\(\inℕ;a>1\)nên a=2(1)
Với a=2 ta có \(\frac{7}{10}< \frac{1}{2}+\frac{1}{b}< 1\Leftrightarrow\frac{1}{5}< \frac{1}{6}< \frac{1}{2}\Rightarrow b\in\left\{3;4\right\}\left(2\right)\)
Từ (1) và (2) ta có min(a+b)=2+3=5
Vậy maxA=\(\frac{2020}{5}=404\)
a = 10/3 ; b = 1