Phân tích đa thức thành nhân tử
a, a+3
b, 4x+1
c ,2a+3
*LƯU Ý: GIẢI BÀI NÀY PHẢI ÁP DỤNG CĂN NHÉ Ạ DO E MỚI HỌC ĐC 2 BÀI ĐẦU CỦA CT LỚP 9 THÔI Ạ NÊN MN ĐỪNG GIẢI BẰNG CÁCH E CHƯA HỌC NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha
(a2+ab+b2).(a2 - ab + b2) - (a4+b4)
= (a2+b2)2-(ab)2-a4-b4
= a4+2(ab)2+b4-(ab)2-a4-b4
= (ab)2
Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha
phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.
=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.
đề chứng mình gì rứa?
\(a,a^2-2a-4b^2-4b\)
\(=\left(a^2-4b^2\right)-\left(2a+4b\right)\)
\(=\left(a-2b\right)\left(a+2b\right)-2\left(a+2b\right)\)
\(=\left(a+2b\right)\left(a-2b-2\right)\)
\(b,x^3-2x^2+4x-8\)
\(=x^2\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4\right)\)
\(c,x^3+36x-12x^2\)
\(=x^3-6x^2-6x^2+36x\)
\(=x^2\left(x-6\right)-6x\left(x-6\right)\)
\(=\left(x-6\right)\left(x^2-6x\right)\)
\(=x\left(x-6\right)^2\)
\(d,5a^2+3\left(a+b\right)^2-5b^2\)
\(=\left(5a^2-5b^2\right)+3\left(a+b\right)^2\)
\(=5\left(a^2-b^2\right)+3\left(a+b\right)^2\)
\(=5\left(a-b\right)\left(a+b\right)+3\left(a+b\right)^2\)
\(=\left(a+b\right)\left[5\left(a-b\right)+3\left(a+b\right)\right]\)
\(=\left(a+b\right)\left(5a-5b+3a+3b\right)\)
\(=\left(a+b\right)\left(8a-2b\right)\)
\(=2\left(a+b\right)\left(4a-b\right)\)
\(e,x^3-3x^2+3x-1-y^3\)
\(=\left(x^3-3x^2+3x-1\right)-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
\(=\left(x-y-1\right)\left(x^2+y^2-xy-y+1\right)\)
#Urushi☕
\(c.\\ x^3+36x-12x^2\\ =x\left(x^2-12x+36\right)\\ =x.\left(x^2-2.x.6+6^2\right)\\ =x.\left(x-6\right)^2\\ ---\\ d.\\ 5a^2+3\left(a+b\right)^2-5b^2\\ =\left(5a^2-5b^2\right)+3\left(a+b\right)^2\\ =5.\left(a^2-b^2\right)+3.\left(a+b\right)\left(a+b\right)\\ =5\left(a+b\right)\left(a-b\right)+3\left(a+b\right)\left(a+b\right)\\ =\left(a+b\right)\left(5a-5b+3a+3b\right)\\ =\left(a+b\right)\left(8a-2b\right)\\ =2\left(a+b\right)\left(4a-b\right)\)
\(e.\\ x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right).y+y^2\right]\\ =\left(x-y-1\right).\left[\left(x^2-2x+1\right)+y\left(x+y-1\right)\right]\)
1) \(x^2-2x-4y^2-4y\)
\(=\left[x^2-\left(2y\right)^2\right]-\left(2x+4y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
2) \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+\left(2x^3-4x\right)\)
\(=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^2\left(1-x^2\right)-4x+4x^2\)
\(=x^2\left(1+x\right)\left(1-x\right)+4x\left(x-1\right)\)
\(=x^2\left(1+x\right)\left(1-x\right)-4x\left(1-x\right)\)
\(=\left(1-x\right)\left[x^2\left(1+x\right)-4x\right]\)
a) \(6x^2-11x+3\)
\(=6x^2-9x-2x+3\)
\(=3x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(3x-1\right)\left(2x-3\right)\)
b) \(2x^2+3x-27\)
\(=2x^2-6x+9x-27\)
\(=2x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(2x+9\right)\left(x-3\right)\)
a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c: \(2x-1-x^2\)
\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)
d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)
g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)
\(=\left(5-x\right)\left(5+3x\right)\)
h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)
\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)
\(=3x\left(-x+2\right)\)
i: \(=x^2y^2-4xy+4-3\)
\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)
k: \(=y^2-\left(x-1\right)^2\)
\(=\left(y-x+1\right)\left(y+x-1\right)\)
l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)
m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)
Theo cách hiểu của t là thế
. Tỉ lệ thuận: Nếu đại lượng x tăng thì đại lượng y cũng tăng, đại lượng x giảm thì đại lượng y cũng giảm. Công thức: y = k.x (k là hằng số khác 0).
. Tỉ lệ nghịch: Nếu đại lượng x tăng lên thì đại lượng y giảm xuống, đại lượng y tăng lên thì đại lượng x giảm. Công thức: y = \(\frac{a}{x}\) hay a = x.y (a là hằng số khác 0)